|
惯性导航系统 (Inertial Navigation System,INS)
惯性导航系统(INS,以下简称惯导)是一种不依赖于外部信息、也不向外部辐射能量的自主式导航系统。其工作环境不仅包括空中、地面,还可以在水下。惯导的基本工作原理是以牛顿力学定律为基础,通过测量载体在惯性参考系的加速度,将它对时间进行积分,且把它变换到导航坐标系中,就能够得到在导航坐标系中的速度、偏航角和位置等信息。
属于一种推算导航方式.即从一已知点的位置根据连续测得的运载体航向角和速度推算出其下一点的位置.因而可连续测出运动体的当前位置。惯性导航系统中的陀螺仪用来形成一个导航坐标系使加速度计的测量轴稳定在该坐标系中并给出航向和姿态角;加速度计用来测量运动体的加速度经过对时间的一次和分得到速度,速度再经过对时间的一次积分即可得到距离。惯性导航系统有如下主要优点.(1)由于它是不依赖于任何外部信息.也不向外部辐射能量的自主式系统.故隐蔽性好已不受外界电磁干扰的影响;(2)可全天流全球、全时间地工作于空中地球表面乃至水下.(3)能提供位置、速度、航向和姿态角数据,所产生的导航信息连续性好而且噪声低.(4)数据更新率高、短期精度和稳定性好.其缺点是.(1)由于导肮伯息经过积分而产生.定位误差随时间而增大.长期精度差;(2)每次使用之前需要较长的初始对准时间;(3)设备的价格较昂贵;(4)不能给出时间信息
但惯导有固定的漂移率,这样会造成物体运动的误差,因此射程远的武器通常会采用指令、GPS等对惯导进行定时修正,以获取持续准确的位置参数。惯导系统目前已经发展出挠性惯导、光纤惯导、激光惯导、微固态惯性仪表等多种方式。陀螺仪由传统的绕线陀螺发展到静电陀螺、激光陀螺、光纤陀螺、微机械陀螺等。激光陀螺测量动态范围宽,线性度好,性能稳定,具有良好的温度稳定性和重复性,在高精度的应用领域中一直占据着主导位置。由于科技进步,成本较低的光纤陀螺(FOG)和微机械陀螺(MEMS)精度越来越高,是未来陀螺技术发展的方向。
我国的惯导技术近年来已经取得了长足进步,液浮陀螺平台惯性导航系统、动力调谐陀螺四轴平台系统已相继应用于长征系列运载火箭。其他各类小型化捷联惯导、光纤陀螺惯导、 激光陀螺惯导以及匹配GPS修正的惯导装置等也已经大量应用于战术制导武器、飞机、舰艇、运载火箭、宇宙飞船等。如漂移率0.01°~0.02°/h 的新型激光陀螺捷联系统在新型战机上试飞,漂移率0.05°/h 以下的光纤陀螺、捷联惯导在舰艇、潜艇上的应用,以及小型化挠性捷联惯导在各类导弹制导武器上的应用,都极大的改善了我军装备的性能 |
|