
Data Checker Utility

User Guide

Disclaimer
Information of a technical nature, and particulars of the product and its use, is given by AVEVA
Solutions Ltd and its subsidiaries without warranty. AVEVA Solutions Ltd and its subsidiaries disclaim
any and all warranties and conditions, expressed or implied, to the fullest extent permitted by law.

Neither the author nor AVEVA Solutions Ltd, or any of its subsidiaries, shall be liable to any person or
entity for any actions, claims, loss or damage arising from the use or possession of any information,
particulars, or errors in this publication, or any incorrect use of the product, whatsoever.

Copyright
Copyright and all other intellectual property rights in this manual and the associated software, and every
part of it (including source code, object code, any data contained in it, the manual and any other
documentation supplied with it) belongs to AVEVA Solutions Ltd or its subsidiaries.

All other rights are reserved to AVEVA Solutions Ltd and its subsidiaries. The information contained in
this document is commercially sensitive, and shall not be copied, reproduced, stored in a retrieval
system, or transmitted without the prior written permission of AVEVA Solutions Ltd. Where such
permission is granted, it expressly requires that this Disclaimer and Copyright notice is prominently
displayed at the beginning of every copy that is made.

The manual and associated documentation may not be adapted, reproduced, or copied, in any material
or electronic form, without the prior written permission of AVEVA Solutions Ltd. The user may also not
reverse engineer, decompile, copy, or adapt the associated software. Neither the whole, nor part of the
product described in this publication may be incorporated into any third-party software, product,
machine, or system without the prior written permission of AVEVA Solutions Ltd, save as permitted by
law. Any such unauthorised action is strictly prohibited, and may give rise to civil liabilities and criminal
prosecution.

The AVEVA products described in this guide are to be installed and operated strictly in accordance with
the terms and conditions of the respective license agreements, and in accordance with the relevant
User Documentation. Unauthorised or unlicensed use of the product is strictly prohibited.

First published September 2007

© AVEVA Solutions Ltd, and its subsidiaries

AVEVA Solutions Ltd, High Cross, Madingley Road, Cambridge, CB3 0HB, United Kingdom

Trademarks
AVEVA and Tribon are registered trademarks of AVEVA Solutions Ltd or its subsidiaries. Unauthorised
use of the AVEVA or Tribon trademarks is strictly forbidden.

AVEVA product names are trademarks or registered trademarks of AVEVA Solutions Ltd or its
subsidiaries, registered in the UK, Europe and other countries (worldwide).

The copyright, trade mark rights, or other intellectual property rights in any other product, its name or
logo belongs to its respective owner.

AVEVA Solutions Ltd

Data Checker Utility User Guide

Contents Page

Data Checker Utility User Guide
Data Checker Utility
Introducing the Data Checker Utility . 1:1
Scope of this Guide . 1:1
How the Guide is Organised . 1:1

Running the Data Checker Utility . 2:1
Specifying the Elements to be Checked . 2:2
Selecting the Check Functions to be Carried Out . 2:2
Highlighting Elements in the Graphical View . 2:3
Running the Checks and Viewing the Results . 2:3
Navigating to a Checked Element . 2:4
Saving Check Results to a File . 2:4
Updating the Available Check Functions . 2:5

Adding a New Check Function. 3:1
Checker Configuration Files . 3:1
Rules for Organising Checks into Groups . 3:3
Check Functions . 3:3
Checker Examples . 3:4
Example 1: Panel Boundary Check. 3:4
Example 2: Structural Element Name Check . 3:6

Modifying and Deleting Check Functions. 4:1
12.0i

Data Checker Utility User Guide
Checker Objects . 5:1
12.0ii

Data Checker Utility User Guide
Introducing the Data Checker Utility
1 Introducing the Data Checker Utility

1.1 Scope of this Guide
This guide describes the Data Checker utility, which allows data consistency checks written
in PML to be added to Outfitting Design quickly and easily.

The Checker utility provides:
• A standard user interface for data consistency checks written in PML.
• Standard reporting, to screen and file, of the results of a data consistency check.
• The ability to add new checking functions tailored to company or project working

practices.
• Navigation in the database to elements that have failed the checks, by simply picking

on part of the on-screen report.

You can add your own customised check functions to any standard data consistency checks
provided by AVEVA. A check function is a PML function which tests selected elements in the
database, and reports back to the Checker utility whether the element has passed or failed
the tests.

This guide does not describe how to program in PML. Before reading the customisation
chapters of this manual you should be familiar with PML facilities, which are described in full
in the Software Customisation Guide.

1.2 How the Guide is Organised
• Running the Data Checker Utility describes how to use the Checker utility to run

predefined data checks.
• Adding a New Check Function explains, with some examples, how to add new Check

functions. It shows the conventions used when programming Check functions in PML.
• Modifying and Deleting Check Functions shows how to modify or delete existing Check

functions.
• Checker Objects defines the principal PML objects used by the Checker utility.

Note: If you simply want to run predefined checks on your design data, you need only refer
to Running the Data Checker Utility.

If you want to customise the Checker utility by editing the files defining available Check
functions, you will need to read the whole of the guide.
12.0 1:1

Data Checker Utility User Guide
Introducing the Data Checker Utility
12.0 1:2

Data Checker Utility User Guide
Running the Data Checker Utility
2 Running the Data Checker Utility

To access the Data Checker utility from within any Outfitting Design application, select
Utilities>Data Checker from the application's main menu bar.

All checking operations are controlled from the resulting form:

Note: When this form is first displayed, the Check Items list will be empty.

The upper part of the form lets you specify which design elements you want to check; the
lower part lets you select one or more check functions to be applied to those elements.

To run a data check, carry out the operations described in the following sections.
12.0 2:1

Data Checker Utility User Guide
Running the Data Checker Utility
2.1 Specifying the Elements to be Checked
Use the Checker form's Add and Remove menu options to edit the Check Items list until it
shows those elements that you want to check.

The Add menu options work as follows:
• CE

Adds the current element (as shown in the Explorer or Members List).
• CE Members

Adds all members of the current element, but not the current element itself.
• Pick

Lets you add elements by picking them in a graphical view, using any of the standard
event-driven graphics options.

• Failed List (valid only after a previous data check)
Adds all elements which have failed an earlier check, as listed on a Checker Results
form (see Running the Checks and Viewing the Results). This option is useful for
rechecking items after you have corrected the reasons for their earlier failure.

• List list_name
Adds all elements in the named list (as created using the application's Utilities > Lists
menu option). This provides a convenient way of adding elements which conform to a
selection rule (for example, 'all pipes with pspec eq /A1A'), or which are within a given
volume.

The Remove menu options work as follows:
• All

Empties the Check Items list.
• Selected

Removes all items currently selected in the Check Items list.
(Pick an element in the list to select it; pick it again to deselect it.)

• CE
Removes the current element (as shown in the Explorer or Members List).

• CE Members
Removes all members of the current element, but not the current element itself.

• Pick
Lets you remove elements by picking them in a graphical view, using any of the
standard event-driven graphics options.

• List list_name
Removes all elements in the named list (as created using the application's Utilities >
Lists menu option). This provides a convenient way of removing elements which
conform to a selection rule (for example, 'all pipes with pspec eq /A1A'), or which are
within a given volume.

2.2 Selecting the Check Functions to be Carried Out
The available check functions are organised into class and group categories, simplifying
the selection of those most relevant to your current design activities. Each class of checks
represents, typically, a main design discipline; for example, Steelwork, Piping, HVAC, Cable
Trays, etc. Each class may have one or more groups associated with it, representing more
specific features of the design discipline; for example, HVAC Branches, HVAC Offsets, etc.
12.0 2:2

Data Checker Utility User Guide
Running the Data Checker Utility
First select the required class of checks from the Classes options. This will automatically
update the Groups options.

Now select the required group of checks from the Groups options. This will automatically
update the Checks list to show all individual checks applicable to the chosen class and
group.

From the Checks list, select one or more checks that are to be made on the elements in the
Check Items list. (Pick an element in the list to select it; pick it again to deselect it.)

2.3 Highlighting Elements in the Graphical View
To make it easier to interpret the check results, you can highlight particular elements in the
graphical view. The Highlight menu options work as follows:

• Elements
Highlights all elements that are in the Check Items list. When you select this option,
you will see a form that lets you choose the highlight colour. Note that only elements
already in the Drawlist will be highlighted; elements are not added to the view
automatically.

• Passed
This is an On/Off toggle option. When on (shown by a tick on the menu), all elements
which pass subsequent checks will be highlighted. Set the required highlight colour
using the Colours > Passed menu option.

• Failed
This is an On/Off toggle option. When on (shown by a tick on the menu), all elements
which fail subsequent checks will be highlighted. Set the required highlight colour using
the Colours > Failed menu option.

• Clear
Clears either just the current element (CE), or everything in the graphical view (All).

2.4 Running the Checks and Viewing the Results
When you have set up the check requirements as described in Specifying the Elements to
be Checked, Selecting the Check Functions to be Carried Out and Highlighting Elements in
the Graphical View, click the Check button to carry out the checking operations. The results
will be displayed in a Checker Results window, as shown.
12.0 2:3

Data Checker Utility User Guide
Running the Data Checker Utility
:

The Passed list shows all elements that have passed all specified checks. The Failed list
shows all elements that have failed one or more checks, with a brief description of the
reason for the failure.

2.5 Navigating to a Checked Element
To navigate easily to any element shown in the Passed or Failed list, click on that item in
the list.

This facility is particularly useful if you want to navigate to a failed element to correct the
reason for the failure before repeating the checks.

2.6 Saving Check Results to a File
To save the results of a data check to a file, select one of the following:

• Control > Save > Results
This saves both the Passed and Failed results. Use the displayed File Browser to
specify the required file name and its location.

• Control > Save > Failed Reference
This saves the database references of elements that have failed, together with the
checks performed. Use the displayed File Browser to specify the required file name
and its location. This facility makes it easy to recheck the failed elements later.

To reload a list of failed element references (saved as in the preceding paragraph), typically
following corrections to their data settings, select Control > Load > Failed References and
use the displayed File Browser to specify the required file.
12.0 2:4

Data Checker Utility User Guide
Running the Data Checker Utility
2.7 Updating the Available Check Functions
If the list of available checks has been modified during your current Outfitting session (say
by editing existing checks or adding new ones), you can update the Checker form to show
the new options immediately. To do so, select Control > Reload Checks.

The checks will be reloaded from the relevant default and user directories and the Classes,
Groups and Checks options will be updated as appropriate.
12.0 2:5

Data Checker Utility User Guide
Running the Data Checker Utility
12.0 2:6

Data Checker Utility User Guide
Adding a New Check Function
3 Adding a New Check Function

3.1 Checker Configuration Files
Although the Checker utility is used by AVEVA to supply standard data checking facilities in
Outfitting, its main purpose is to allow users to add their own checking tools.

The utility is controlled by creating configuration files. These configuration files will tell the
system what checks are available, and which elements to select for checking. In order to
keep standard (AVEVA) and user checking functions separate, they are configured in
separate configuration files.

The standard AVEVA-supplied checks for Outfitting data are configured in a file called com-
checks.pmldat, in the product directories. This file must not be modified. (The com prefix
shows that this file can, in principle, apply to any Outfitting module; in this release, the utility
is available from Outfitting Design only.)

User-supplied checking tools for Design data must be configured in files named des-
checks.pmldat in the following directories:

• The PDMSDFLTS directory holds company-wide checks, which are available to all
projects.

• The ABCDFLTS directory (where ABC is the project name) holds checks specific to
one project.

• The PDMSUSER directory holds checks specific to a single user.

Entries in all des-checks.pmldat files available to a user will be combined together on the
Checker form.

The format of des-checks.pmldat files is described by example below. The commands in the
file must be valid PML syntax, and all information must be provided for each checking
function.

The Checker file in the following example contains two checks:
• The first check identifies any panels that have incorrectly defined boundary curves. It

does so by checking for panels having fewer than three vertices, or zero-length edges.
• The second check looks for structural elements that do not obey a naming convention.

The naming convention for this example is that the names of all SCTN, PANEL, FRMW
and SBFR elements must start with the first two letters of a UDA :PRODNO, which is set
at ZONE level.

-- Data file for Design Checker Utility

-- Comment lines begin --

--Checks for panel zero length edges, backtracks, and <3 vertices
12.0 3:1

Data Checker Utility User Guide
Adding a New Check Function
!Check.Title identifies the check in the Checks selection window and in the Failed results
list.

!Check.Class and !Check.Group determine the Classes and Groups descriptions for the
check function.

!Check.Types is a list of element types that will be selected for this test. This list will be
filtered by the rule in !Check.Rule. Only elements from the !Check.Types list which obey
any conditions specified in !Check.Rule will be presented to the check function by the
Checker utility. The database reference (DBREF object) of a selected database element is
passed to the check function. The check function must be written to handle any elements
that might be selected and passed to it. If the check function itself fails, this will be reported
in the Failed results list.

!Check = object CHECK() Declaration of new check entry

!Check.Name = 'LOOPCHECK' Name of check function

!Check.Title = 'Check Panel Boundary' Title appears in Check selection box

!Check.Class = 'Steelwork' Add this check function to this class

!Check.Group = 'Panels' Add this check function to this group

!Check.Types = 'PANE' Type of element to be checked

!Check.Rule = '' Rule for filtering selected element types
(none)

!Check.Function = '!!EdgeCheck' Name of Check Function

!Check.Module = 'Design' Outfitting module using this function

!Check.FileType = '$1' Mandatory line for checker utility

!!AddCheckerCheck(!Check) Adds this check to the list of checks

--

-- Check that primary steel element names begin with the first two
letters of the Production Number in :PRODNO UDA on ZONE

!Check = object CHECK() Declaration of new check entry

!Check.Name = 'STRUCTNAME' Check name

!Check.Title = 'Check Steelwork Names’ Title appears in Check selection box

!Check.Class = 'Steelwork' Class

!Check.Group = 'Administration' Group

!Check.Types = 'PANE SCTN FRMW SBFR' List of element types to check

!Check.Rule = 'FUNC OF ZONE eq |PS|' Selection filter

!Check.Function = '!!PSNameCheck' Name of Check Function

!Check.Module = 'Design' Used in Outfitting Design

!Check.FileType = '$1' Mandatory Line

!!AddCheckerCheck(!Check) Add to the list of Checks
12.0 3:2

Data Checker Utility User Guide
Adding a New Check Function
!Check.Function is set to the name of the check function, which must include the !! at the
beginning of the name. This function must exist in the PMLLIB search path. The filename of
the function will be the same as the function name, but all in lower case with a .pml filename
extension; for example, the !!PSNameCheck function will be defined in file
psnamecheck.pml.

!Check.Module is set to the Outfitting module in which this check will run.

The !Check.FileType = '$1' line is mandatory.

The !!AddCheckerCheck(!Check) line adds the details of this check to the list of available
checks.

3.2 Rules for Organising Checks into Groups
Any number of Check Classes and Check Groups can be defined, but you must adhere to
the following rule:

• All checks in the same class and group must have exactly the same selection criteria.
!Check.Types must contain the same element list, !Check.Rule must contain the same
selection filter, and !Check.Module must identify the same module.

If this rule is broken, then the results from the checker can be unreliable, particularly when
multiple checks are run at the same time.

3.3 Check Functions
Check functions are PML functions which are called by the Checker utility. The name of the
function is provided to the Checker utility from the !Check.Function line in a des-
checks.pmldat file.

A Check function contains PML code, which must follow these rules:
• The function definition must have the following format:

define function !!FunctionName (!ItemRef is DBREF, !Check is
CHECKDEFINITION) is CHKRETURN
!!FunctionName is the name of the function in the !Check.Function line in a des-
checks.pmldat file. The PML file for a check function will be in a file named
functionname.pml.
!ItemRef is the name of the variable containing the database reference of the item to be
checked.
!Check is passed as an argument to the function, although it is not often used. !Check
contains all of the information provided in the des-checks.pmldat file for this check
function.
These arguments are strictly read only. You should not reset the values of these
arguments in the function itself.

• The return information from a Check function must be put into a ChkReturn object.
The detailed definition of this object is described later in this guide.
A ChkReturn object must be built by the Check function to tell the Checker utility
whether the check has passed or failed. It is advisable to initialise the return value at
the start of the Check function:

!Result = object CHKRETURN() Declare the Return object
12.0 3:3

Data Checker Utility User Guide
Adding a New Check Function
• The remainder of the function performs the required check on the object passed in the
first argument of the Check function. If any test in the function fails, the result must be
set to indicate a failure. This is done by using the following method:

The function may stop and return a result after the first error is found, or it could go on and
find other errors and add them to the message list.

The result is returned to the Checker utility using the command:

return !Result

3.4 Checker Examples

3.4.1 Example 1: Panel Boundary Check
This example checks a panel boundary for zero length edges and missing vertices. The
comments in the PML code describe the operations being performed.
--
-- Description:
-- Checks for bad definition of panel boundary vertices:
-- Zero length edge; Less than three vertices; Panel loop not found
--

define function !!EdgeCheck(!PanelRef is DBREF, !Check is CHKDEFINITION) is
CHKRETURN

 -- Initialise Variables
 !Result = object CHKRETURN()
 !Result.Passed = true
 !Result.Messages.clear()

 -- Get panel loop element - error if it does not exist
 !PloopRef = (PLOOP 1 OF $!PanelRef)
 Handle any
 !Result.Passed = false
 !Result.Messages.append('No Panel Loop Found')
 return !Result
 endhandle

 -- get array of vertices belonging to the panel boundary
 VAR !Vertices COLLECT ALL PAVE FOR $!PloopRef
 !NumberOfVerts = !Vertices.size()

 -- Check that there are at least three vertices
 if(!Vertices.size() lt 3) then
 !Result.Passed = false
 !Result.Messages.append('Only ' & !Vertices.size() & ' Vertices')
 return !Result

!Result.Passed = true Initialise to test passed

!Result.Messages.clear() Initialise the message list

!Result.Passed = false Indicates a test failure

!Result.Messages.append(‘Text of error message’)

Add a message to the list of
fail messages
12.0 3:4

Data Checker Utility User Guide
Adding a New Check Function
 endif

 -- Add first vertex to the end to close the loop
 !Vertices.append(!Vertices[1])

 -- Loop through vertices and check for zero length edge
 do !IndexVerts to !NumberOfVerts

 -- get address and position of this vertex and next vertex
 !Vertex = !Vertices[!IndexVerts].dbref()
 !NextVertex = !Vertices[!IndexVerts + 1].dbref()
 !VertexPos = !Vertex.Pos
 !NextVertexPos = !NextVertex.Pos

 -- calculate distance between vertices & test for less than 0.01mm tolerance
 VAR !Dist CONSTRUCT DIST $!VertexPos TO $!NextVertexPos
 if(!Dist.real() lt 0.01mm) then
 !Result.Passed = false
 !Result.Messages.append('Zero length edge: Vertex ' & !IndexVerts.string())
 skip
 endif

 enddo

 -- Return Data
 return !Result
endfunction

The following is a sample report generated by running the preceding panel boundary check:
Check Report File

 Created By : M.Barlow
 Date : 10 Oct 97

Checks Performed
 Class : Steelwork
 Group : Panels
 [1] Check Panel Boundary

Summary of Checks

 Elements passed all tests : 8
 Elements failed on or more tests : 4
 Total : 12

Elements that have passed all checks : 8

 DEVTEST-C22001-P00001
 DEVTEST-C22001-P00002
 DEVTEST-C22001-P00003
 DEVTEST-C22001-P00004
 DEVTEST-C22001-P00005
 DEVTEST-C22001-P00006
 DEVTEST-C22001-P00007
 DEVTEST-C22001-P00008

Elements that have failed one or more checks: 4
12.0 3:5

Data Checker Utility User Guide
Adding a New Check Function
 Element: PANEL 1 of FRMWORK /DEVTEST-C22001
 Check Panel Boundary - No Panel Loop Found

 Element: PANEL 2 of FRMWORK /DEVTEST-C22001
 Check Panel Boundary - Only 1 Vertices

 Element: PANEL 3 of FRMWORK /DEVTEST-C22001
 Check Panel Boundary - Zero length edge: Vertex 2

 Element: PANEL 8 of FRMWORK /DEVTEST-C22001
 Check Panel Boundary - No Panel Loop Found

End of Check Report File

3.4.2 Example 2: Structural Element Name Check
This example checks the names of PANE, SCTN, FRMW and SBFR elements for primary
steel ZONES (with FUNC ‘PS’). This example checks a panel boundary for zero length
edges and missing vertices. The comments in the PML code describe the operations being
performed.
--
-- Description:
-- Checks that the first two letters of primary steel element names are
-- the same as the first two letters of the Production Number of that
-- ZONE. The Production Number is stored in UDA :PRODNO. A Zone containing
-- primary steel has its FUNC attribute set to 'PS'. Errors tested:
-- Production Number UDA not set
-- Production Number UDA incorrect (less than two letters)
-- Steelwork element not named
-- Name of <item full name> does not begin with <first 2 letters of :PRODNO>
--

define function !!PSNameCheck (!ItemRef is DBREF, !Check is CHKDEFINITION) is
CHKRETURN

 -- Initialise Variables
 !Result = object CHKRETURN()
 !Result.Passed = true
 !Result.Messages.clear()

 -- Get Production Number and check that it is set
 !ZoneRef = (ZONE OF $!ItemRef)
 !ProductionNumber = !ZoneRef.attribute(':PRODNO')

 if (!ProductionNumber.empty()) then
 !Result.Passed = false
 !Result.Messages.append('Production Number not set for ' & !ZoneRef.flnn)
 return !Result
 endif

 -- Check that production number has at least two characters
 if (!ProductionNumber.length() lt 2) then
 !Result.Passed = false
 !Result.Messages.append('Production Number incorrect for ' & !ZoneRef.flnn)
 return !Result
 endif

 -- Get first two characters of the production number
 !ProdCode = !ProductionNumber.substring(1,2)
12.0 3:6

Data Checker Utility User Guide
Adding a New Check Function
 -- Get name of steel element
 !Name = !ItemRef.Name

 -- Test for unset name - First character will be '='
 if(!Name.substring(1,1) eq '=') then
 !Result.Passed = false
 !Result.Messages.append(!ItemRef.Type & ' not named ')
 return !Result
 endif

 -- Test for first two letters of Production number = first two letters of name
 if(!Name.substring(2,2) neq !ProdCode) then
 !Result.Passed = false
 !Result.Messages.append(!ItemRef.Type & ' name does not begin with ' & !ProdCode
)
 endif

 -- Return Data
 return !Result
endfunction

The following is a sample report generated by running the preceding panel name check:
Check Report File

 Created By : M.Barlow
 Date : 9 Oct 97

Checks Performed
 Class : Steelwork
 Group : Administration
 [1] Check Primary Steelwork Names

Summary of Checks

 Elements passed all tests : 13
 Elements failed one or more tests : 5
 Total : 18

Elements that have passed all checks : 13

 PA-C22001-P00002
 PA-C22001-S00001
 PA-C22001-P00003
 PA-C22001-S00003
 PA-C22001-S00004
 PA-C22001-S00005
 PA-C22001-S00006
 PA-C22001-S00007
 PA-C22001-S00008
 PA-C22001-S00009
 PA-C22001-P00005
 PA-C22001-P00006
 PA-C22001-P00007

Elements that have failed one or more checks: 5
12.0 3:7

Data Checker Utility User Guide
Adding a New Check Function
 Element: DEVTEST-C22001
 Check Primary Steelwork Names - FRMW name does not begin with PA

 Element: DEVTEST-C22001-P00001
 Check Primary Steelwork Names - PANE name does not begin with PA

 Element: DEVTEST-C22001-S00002
 Check Primary Steelwork Names - SCTN name does not begin with PA

 Element: DEVTEST-C22001-P00004
 Check Primary Steelwork Names - PANE name does not begin with PA

 Element: PANEL 5 of FRMWORK /DEVTEST-C22001
 Check Primary Steelwork Names - PANE not named

End of Check Report File
12.0 3:8

Data Checker Utility User Guide
Modifying and Deleting Check Functions
4 Modifying and Deleting Check Functions

If any of the information in the des-checks.pmldat configuration file is changed, or if a check
is deleted by removing its entry from the file, it will be necessary for the checks to be
reloaded on each active or saved user Checker utility form by using the Control > Reload
Checks option.

The Check functions themselves can be modified by simply editing the Check function PML
file. If the Check function is moved to another location, it will not be found until users restart
Outfitting, or the PML REHASH command is used to tell Outfitting to rebuild its table of
currently available PML functions.
12.0 4:1

Data Checker Utility User Guide
Modifying and Deleting Check Functions
12.0 4:2

Data Checker Utility User Guide
Checker Objects
5 Checker Objects

A ChkReturn object is returned from a Check function to the Checker utility to tell the utility
whether the element has passed or failed the test.

If the check has passed, the .Passed member will be set to TRUE and the array of text
string messages is initialised as empty.

If the check has failed, the .Passed member will be set to FALSE and the array of text string
messages should contain at least one entry.

-- Define object
define object CHKRETURN

 -- Message Array
 member .Messages is ARRAY
 -- Passed=TRUE Failed=False
 member .Passed is BOOLEAN

endobject
-- End of object definition

The Check object is the object created in the des-checks.pmldat file to configure the
Checker utility. It is also passed to the Check function as its second argument.

-- Define object
define object CHECK

 -- Check Name (unique)
 member .Name is STRING
 -- Check Class
 member .Class is STRING
 -- Class Check Type
 member .Group is STRING
 -- Check Description
 member .Title is STRING
 -- Check Function Name
 member .Function is STRING
 -- Permissible Element types
 member .Types is STRING
 -- Selection rule
 member .Rule is STRING
 -- Successful action
12.0 5:1

Data Checker Utility User Guide
Checker Objects
 member .Passed is STRING
 -- Failed action (if none returned from check)
 member .Failed is STRING
 -- Module check is available form
 member .Module is STRING
 -- File type (who/where check is loaded from)
 member .FileType is STRING

endobject
-- End
12.0 5:2

Index

Data Checker Utility User Guide
A
Add menu . 2:2

C
Check files

Directories . 3:1
Check functions

Reloading . 2:5
Check Items list

Adding/removing entries 2:2
Check object 3:2, 5:1
Check.Class object member 3:2
Check.Function object member 3:3
Check.Group object member 3:2
Check.Module object member 3:3
Check.Rule object member 3:2
Check.Title object member 3:2
Check.Types object member 3:2
Checker form . 2:1
Checker Results form 2:3

Failed list . 2:4
Passed list . 2:4

Checks
Selecting . 2:3

ChkReturn object 3:3, 5:1
Class

Selecting . 2:3
com-checks.pmldat files 3:1
Configuration files 3:1, 4:1

D
des-checks.pmldat files 3:1, 4:1

F
Failed list . 2:4

G
Group

Selecting . 2:3

H
Highlight menu . 2:3

P
Passed list . 2:4
PDMSDFLTS directory 3:1
PDMSUSER directory 3:1
Project defaults directory 3:1

R
Remove menu . 2:2
Results

Reloading . 2:4
Saving . 2:4
Viewing . 2:4
12.0Index page i

Data Checker Utility User Guide
12.0Index page ii

	Data Checker Utility
	1 Introducing the Data Checker Utility
	1.1 Scope of this Guide
	1.2 How the Guide is Organised

	2 Running the Data Checker Utility
	2.1 Specifying the Elements to be Checked
	2.2 Selecting the Check Functions to be Carried Out
	2.3 Highlighting Elements in the Graphical View
	2.4 Running the Checks and Viewing the Results
	2.5 Navigating to a Checked Element
	2.6 Saving Check Results to a File
	2.7 Updating the Available Check Functions

	3 Adding a New Check Function
	3.1 Checker Configuration Files
	3.2 Rules for Organising Checks into Groups
	3.3 Check Functions
	3.4 Checker Examples
	3.4.1 Example 1: Panel Boundary Check
	3.4.2 Example 2: Structural Element Name Check

	4 Modifying and Deleting Check Functions
	5 Checker Objects

