船舶焊接技术应用现状

he present situation for the application of the shipping welding technology

江南造船(集团)有限公司焊接研究所所长 倪慧锋

1 焊接技术对船舶建造重要性

焊接工作量占船体建造总工作量30%~40%,焊接成本占船体建造成本的30%~50%。同时,焊接技术能扩大造船总量、缩短造船周期、稳定焊接质量、提高经济效益、减轻劳动强度等。

2 我国船舶焊接技术的起步与发展

造船焊接技术起步于50年代手工电弧焊;50年代中期引进埋弧自动、半自动焊;50年代末期~70年代末,试验半自动CO₂焊、重力焊、下行焊、衬垫单面焊获得成功;80年代初,船总大力发展高效焊技术,成立高效焊接技术指导组,推广应用各种高效焊

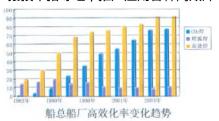


表1 船总船厂高效化率统计表

农! 加心加! 同双心平划11农				
年份	CO₂气体保护焊	埋弧自动焊	高效化率	
1983	0.59	14.80	19.50	
1986	3.89	16.72	30.08	
1990	9.51	19.86	50.25	
1996	23.74	14.61	68.56	
1998	35.60	15.70	74.80	
2000	49.53	10.99	76.80	
2001	55.00	10.03	80.98	
2002	65.62	10.03	83.02	
2003	76.70	8.59	91.30	
2004	77.80	10.60	92.30	

接工艺。

3 我国船舶焊接三大主要方法

船舶焊接具有工件庞大、形状复杂、施工环境差等特点。主要有以下三种焊接方法: 埋弧自动焊:普通单、双丝埋弧焊、FCB法、RF法、FAB法; CO2气体保护焊:常规CO2半自动焊、双丝自动焊(MAG)、自动角焊、CO2气保护单面焊、CO2气电垂直自动焊; 手工焊条焊:铁粉焊条焊、下行焊条焊、深熔焊条焊、重力焊、普通焊条焊。船总船厂高效化率统计表如表1所示。

3.1 铜衬垫单面埋弧自动焊(FCB)

原理:焊缝反面采用铜衬垫支撑, 其上铺设衬垫焊剂,利用通气软管将 铜垫板压紧在坡口背面,正面焊接, 反面同时成形。

应用:主要用于平面组装阶段的 船底外板、舷侧外板、双层底板、顶 板、甲板、隔板等的拼板对接焊。

特点:双丝、三丝(多丝)焊, 熔敷效率高;单面焊实现焊缝反面成形,节省工时;装配定位焊缝可在坡口内实施;坡口形状、焊接条件的波

动允许范围广;长焊缝焊接需要大型门架结构支持;易产生热裂纹,特别是厚板终端裂纹。3.2 热固型焊剂衬垫单

面埋弧焊(RF法)

原理:一种单面自动埋弧焊方法,可以得到均匀的背面焊道。焊接只在正面一侧进行,背面是含有热硬化性树脂的衬垫焊剂,它的下部是装有底层焊剂的焊剂袋,再下部是通气软管、它们都被放置在衬垫外壳之内,依靠密封的通气软管将焊剂压紧在坡口背面。FCB、RF工艺比较如表2所示。

3.3 焊剂石棉衬垫单面埋弧焊(FAB)

原理:利用柔性衬垫材料装在坡口背面一侧,并用铝板和磁性压紧装置将其固定的单面埋弧焊。

特点:具有良好柔性,对较大接 头错边、变形、不等厚接头有好的适 应性,使用操作灵活、方便。

应用:平板及背面侧有曲率的对接焊,如弯曲外壳板、甲板、底板。适用于船体分段中合拢、船台(船坞)大合拢。

- 3.4 T排制作自动角焊。无需装配焊接;焊接速度快;焊接变形小。
- 3.5 船体纵骨自动角焊。双丝双电弧; 平直分段纵骨焊接;同时焊接4 纵骨 8条缝。
- 3.6 简易CO自动角焊。专用自动焊

表2	FCB.	RF工艺比较
1.84	I OD	$-111 + \times$

	FCB法	RF法		
不同点	错边、板厚差适应性低	错边、板厚差适应性强		
	需要足够大且均匀压紧力	可依靠板列自重		
	反面必须采用铜衬垫支撑	无需铜衬垫		
相同点	适用拼板平对接单面焊;反面成形依靠焊剂衬垫;			
	可实现大线能量焊接			

接小车,轻便、灵活、易携永久磁铁、导向机构,避免脱离焊接线,适用于长直焊缝,立角焊具有摆动功能,可以调整摆动速度、摆动幅度、中心位置与左右停留时间,焊缝两端需要补焊。

3.7 CO₂垂直气电自动焊

原理:焊接时采用CO;专用药芯焊丝,焊缝正面通过水冷铜滑块强制成形,反面借助于衬垫也同时成形的一种高效焊接方法。

特点与应用:高熔敷效率,生产效率比手工焊提高5~7倍;焊丝伸出长度控制在恒定值,适应变化的焊接条件;单道焊可焊接最大板厚32mm;坡口间隙必须严格控制;用于船台(船坞)大合拢垂直对接缝,如船体外侧壳板、隔板。

- 3.8 双丝MAG焊。双电极双摆动CO。 气体保护单面焊双面成形,无间隙装配,可在坡口内侧定位焊,坡口背面 敷粘贴型陶瓷衬垫,送丝机和丝盘与 焊机一体化,可进行长拼缝连续焊, 22mm板厚拼接可一次焊接完成,焊 接效率是普通CO。焊的8倍,适用大 合拢主甲板、内底板对接,中合拢平 板对接。
- 3.9 普通CO。气保护单面焊。船厂应用最广泛的焊接工艺,设备投资少,高效且工艺实施方便,打底焊第一道焊接是关键,可在平、立、横多个位置施焊。
- 3.10 焊条高效化。重力焊:平直角焊缝,一人可同时操作多台;铁粉焊条:药皮中加入铁粉,提高熔敷效率;下行焊条:改变药皮渣系,提高电弧吹力、熔渣凝固点温度;深熔焊条:可焊透板厚12mm以下对接焊缝。

4 国外船舶焊接先进技术

4.1 搅拌摩擦焊(FSW)

1991年,由英国焊接研究所(The Welding Institute-TWI)发明。焊接过 程属于固相焊接,核心技术是搅拌头, 焊接工艺参数包括搅拌头旋转速度、 焊接速度、倾斜角度、焊接压力。高 质量焊接接头,无裂纹、夹杂、气孔 等缺陷,焊接变形小,无需焊接材料, 焊前工件表面清理要求低,焊接过程 中无飞溅、烟尘、噪音等环境污染。 适用制造大型船舶铝合金结构件,挪 威、日本、澳大利亚等国的船舶制造 公司生产预成形结构件(一般为板材 或挤压型材),使船舶制造由零件的 制造装配转变为船舶甲板以及壳体的 预成型结构件的装配。单道焊接铝合 金厚度达100mm,双道焊接达180mm。

4.2 激光复合焊 (Laser-Hybrid)

激光+常规MIG或MAG焊,与单纯激光焊比较有许多优点:

- 4.2.1 可有效利用激光能量,电弧先 将母材熔化,提高激光吸收率。
- 4.2.2 增加熔深,利用激光束作用于 电弧形成的熔池底部,进一步提高焊 接熔深。
- 4.2.3 稳定电弧,激光使气体电离产 生等离子体,有助于电弧稳定。
- 4.2.4 降低焊缝装配精度,装配间隙由0.3mm增大至1mm。

船舶建造的激光焊大部分采用大功率CO激光器,主要用于大型豪华邮轮、高速滚装/客滚船、军用舰艇等高附加值的军民用舰船薄板及合金材料焊接,可以保证船体结构轻盈,焊缝性能好,表面成形美观,构件不变形。

应用船厂:德国Meyer(玛亚)船

厂、Blohm+Voss(博隆·福斯)船厂、 丹麦Odense(欧登塞)船厂、德国Kvaerner Warnow(克瓦尔纳·瓦诺)船 厂。

4.3 焊接机器人

计算机技术、自动控制技术、气保护焊接技术的完美结合,适用于船舶构件批量化、小型化焊接生产以及狭窄舱室短焊缝全位置焊接。有固定机械臂式焊接机器人、可移动便携式离线编程焊接机器人。上世纪90年代初,日本船厂已开始使用焊接机器人,随后又研制出自动切割机器人。2003年,韩国现代重工研发出5种获得国际认证的焊接机器人,用于造船焊接。

具有焊接重现性好,环境适应性 强、智能化程度高的优点。

5 国内船舶行业焊接技术发 展趋势

- 5.1 船舶行业发展需求。造船总量不断上升,2015年预计可突破3000万吨;船舶大型化,船型多样化;进一步提高船舶市场国际竞争力。
- 5.2 船舶焊接技术发展方向。CO₂气保护焊自动化程度不断提高,应用范围扩大;手工焊条焊应用逐步减少,焊接机器人(智能化焊接系统)尝试应用;焊接设备趋向低能耗,高负载持续率,数字化。
- 5.3 船舶焊接中存在的问题。造船模式相对落后;大型焊接系统国产化率低;高性能焊接材料依赖进口;国产船用钢板大线能量焊接适应性;焊接技术人员流失严重,工艺开发能力不足;生产组织管理不够完善;工艺研究成果转化为生产应用比率不高。