
Vitesse Outfitting

Training Guide • Training Guide • Training Guide

Revision Log

Date Page(s) Revision Description of Revision Release

5/07/2004 All T.Lisowski General Update for M3 M3
21/07/2004 All T.Lisowski General Update for M3 SP1 M3 SP1

Updates

Updates to this manual will be issued as replacement pages and a new Update History Sheet complete with instructions
on which pages to remove and destroy, and where to insert the new sheets. Please ensure that you have received all
the updates shown on the History Sheet.

All updates are highlighted by a revision code marker, which appears to the left of new material.

Suggestion/Problems

If you have a suggestion about this manual, the system to which it refers, or are unfortunate enough to encounter a
problem, please report it to the training department at

Fax +44 191 201 0001
Email training@tribon.com

Copyright © 2004 Tribon Solutions

All rights reserved. No part of this publication may be reproduced or used in any form or by any means (graphic,
electronic, mechanical, photocopying, recording, taping, or otherwise) without written permission of the publisher.

Python 2.3 is Copyright © 2001-2003 Python Software Foundation

Printed by Tribon Solutions (UK) Ltd on 17 January 2005

3

Contents

1 Introduction.. 5
1.1 Objectives ... 5
1.2 Prerequisites for training course .. 5
1.3 Training methods ... 5
1.4 Overview.. 5
1.5 Duration... 6
1.6 Using this document .. 6

2 Placed and unplaced volumes ... 7
2.1 Introduction... 7
2.2 Handling unplaced volumes.. 7
2.3 Subvolumes and volume primitives ... 8
2.4 Creation of volume primitives ... 9
Exercise 1: Creating a volume... 11
2.5 Connections.. 11
2.6 Placed volumes .. 12

3 Equipments .. 13
3.1 Handling outfitting modules.. 13
3.2 Activate/Build/Save process – the overview.. 13
3.3 Setting the attributes for the current equipment item .. 14
3.4 Placing and transforming the equipment... 14
3.5 Releasing the equipment ... 15
3.6 Document references... 15
Exercise 2: Placing an equipment ... 16

4 Structures... 17
4.1 Introduction... 17
4.2 Manipulating the Complete Structure... 17

4.2.1 Activate/Build/Save process – the overview.. 17
4.2.2 General Functions ... 18
4.2.3 Production Information .. 19

4.3 Manipulating Parts of the Current Structure.. 20
4.3.1 Names of Pseudo-Components .. 20
4.3.2 Generating Structure Parts.. 20
4.3.3 General Modelling Functions... 24
4.3.4 Production Information .. 24

4.4 Standard Structures ... 25
4.5 Structure References (cableways).. 25
4.6 Document references... 26
Exercise 3: Creation of the plate with bolt holes ... 26

5 Pipes ... 27
5.1 Definition of pipe model structures .. 27
5.2 Pipe Object functions... 27

5.2.1 Activate/Build/Save process – the overview.. 28
5.2.2 General functions .. 29

Exercise 4: Modifying the colour of pipes in the system.. 30
5.2.3 Pipe traversing functions ... 30
5.2.4 Document references .. 31

5.3 Spool functions .. 31
5.3.1 Handling spool properties.. 31

4

5.3.2 Handling spool weld gaps.. 32
5.3.3 Traversing spool parts ... 32

5.4 Pipe Part functions... 32
5.4.1 Adding (inserting) and deleting parts... 32
5.4.2 Resizing and re-specifying parts ... 34
5.4.3 Transforming pipe parts... 35
5.4.4 Handling part connections ... 35
5.4.5 Handling the part excess information .. 36
5.4.6 Handling pipe part weld gaps .. 36
5.4.7 Handling connections between pipe parts and structures ... 36
5.4.8 Pipe part properties ... 37

5.5 Joint functions.. 37
5.6 Routing functions... 38
5.7 Material functions... 39
Exercise 5: Routing a pipe over a structure ... 40
5.8 Production functions ... 41
5.9 Miscellaneous functions.. 42

6 Cables and cableways .. 43
6.1 Cable functions... 43

6.1.1 Activate/Build/Save process – the overview.. 43
6.1.2 General functions .. 44
6.1.3 Document references .. 44

6.2 Cableway Object functions.. 45
6.2.1 Activate/Build/Save process – the overview.. 45
6.2.2 Document references .. 46
6.2.3 Routing cableways .. 46
6.2.4 Managing cableway material ... 47
6.2.5 Handling connections between cableways.. 48
6.2.6 Handling cables on the cableway .. 48
6.2.7 Handling the whole cableway .. 48

6.3 Default value handling ... 48
6.4 Production Functions .. 49
Exercise 6: Making a cableway ready ... 49
6.5 Cable Penetration Functions... 49

5

Chapter 1

1 Introduction
Tribon Vitesse contains a set of modules supporting the creation of outfitting objects. The flexibility of Vitesse macros
can help to automate various modelling tasks concerning volumes, equipments, structures, cables, cableways, pipes
and ventilation objects. The following chapters will guide you through the study of the Vitesse abilities concerning the
modelling of the particular kind of outfitting objects.

1.1 Objectives

The aim of the course is to provide the knowledge required for creating Tribon Vitesse macros. After completing
the course, the user should be in a position to immediately start using Vitesse system.

The objective is to become familiar with the Tribon Vitesse functions in the area of:

• modelling volumes;
• Structure Modelling;
• Pipe/Ventilation Modelling;
• Cable Modelling (cables, cableways and penetrations);
• modelling equipments.

1.2 Prerequisites for training course

During the training, the participants require access to a PC with an installation of the Tribon M3 system with the Python
source editor (e.g. PythonWin or ConTEXT). All participants should have completed the Vitesse Basic training course.

The following skills are required from at least one person in each group:

• Working knowledge of Tribon Drafting system (including the modelling of volumes and equipments),

• Basic knowledge of Tribon Data Extraction system,

• Working knowledge of the Tribon Structure Modelling system,

• Working knowledge of the Tribon Cable Modelling system,

• Working knowledge of the Tribon Cable Modelling system,

• Working knowledge of the Pipe/Ventilation Modelling system,

• Understanding of the Tribon component concept,

• Basic programming experience.

A copy of the training project must be installed for this training prior to the trainer arriving.

1.3 Training methods

Presentations, demonstrations and practical exercises.

1.4 Overview

All outfitting modelling activities are based on the concept of components. The shape of components may be defined
using volumes. Tribon M3 for the first time provides the Vitesse interface to the volume modelling abilities of Tribon.
Unplaced volumes can be build from primitives. We can also set some basic properties of the primitives, and place
copies of volumes in the ship's space.

Some components representing devices are placed in the model as equipments. Tribon Vitesse can create equipments,
set its properties and place them in the ship's model. They provide an appropriate information for production, unlike
placed volumes, which are 3D shapes only.

6

Tribon Vitesse supports also fully the creation of structures. They can be initialised and built by adding various kinds of
parts (plates, profiles, bent plates, bent profiles, miscellaneous components). Production information can be supplied,
and the structure can be marked as ready and split. The ability to use Data Extraction, and the modelling environment of
Tribon system makes possible to create automatically various foundations, pipe supports or cableway hangers. A
separate product, called Pipe Support, has been developed entirely in Vitesse to enable the creation of standardised
pipe supports and hangers.

Similar scope of functionality is available for creating pipe and ventilation objects, although the Pipe Modelling interface
is significantly more complex. Not only the typical parts can be added or inserted, but also the non-physical parts (like
joints or weld gaps) can be handled. There are functions dealing with connections between pipe parts, or handling pipe
spools. Additionally, pipe routes can be generated, the frame parts can be dressed with material, and the complete
production information can be prepared and generated.

Finally, a similar support can be found for cables and cableways, including the penetrations. An effort has been made to
keep the approach to the functionalities available in outfitting Vitesse modules as similar, as possible, which makes it
easier to learn for the students.

1.5 Duration

3 days

1.6 Using this document

Certain text styles are used to indicate special situations throughout this document; here is a summary;

All examples will be displayed as bold text in the Courier New font, and the program output will be indented to the
right with respect to the user input. System prompts should be bold and italic in single quotes, i.e. 'Choose function'.

Annotation for trainees benefit:

L Additional information

	 Refer to other documentation

Larger examples and solutions to the exercises have not been included in the Training Guide, but can be found in
the folder 'Vitesse Outfitting Training' under SB_PYTHON of the training project. References to these examples are
annotated with:

� Refer to the training examples

In order to keep the examples short, it is assumed, that the proper modules have been imported using the import
statement. Missing parts of the code are often replaced by ellipsis '…' and a comment describing what has been omitted.

7

Chapter 2

2 Placed and unplaced volumes

2.1 Introduction

Volumes are 3D shapes, composed from the predefined, parameterised 3D primitives, such as: the parallelepiped, the
truncated cone, the spherical segment, the torus segment, etc. They are used for defining the shape of various Tribon
components, that in turn, define equipments or the parts of structures and pipes. Additionally, the volumes can be placed
in the ship's space, to reserve space for some equipment. It must be noted, however, that such placed volumes do not
carry any production information about the equipment – they are just 3D shapes, nothing more.

The volumes are stored in three Tribon databanks:

• SBE_GENVOLDB – the library of unplaced volumes, independent from the project (component volumes)

• SBD_VOLUME – the library of unplaced volumes for the current project

• SBD_VOL_PLAC – the databank of placed volumes for the current project

Tribon Vitesse in Tribon M3 provides a set of new modules for modelling volumes. The basic functionality is offered by
the kcs_vol module, which is accompanied by a set of modules containing definitions of classes representing various
3D primitives.

L Current functionality of the kcs_vol module handles only the unplaced volumes stored in SBD_VOLUME.

Following the convention used in the whole Vitesse API, the variable kcs_vol.error is set to a string describing an
error, when an exception is raised while the volume modelling functions are used.

2.2 Handling unplaced volumes

All outfitting Vitesse modules understand the concept of the "current model object". Some functions will assume, that
they are operating on the model object, that has been previously "activated" or "made current". The model object may
become current by creating it (a new object) or by activating it (existing object). After making the modifications to the
current model object it has to be deactivated (released), possibly after saving the changes made to the model.

The volume handling Vitesse API follows the approach presented above. For creating a new volume, the following
pattern should be used:

⇒ kcs_vol.vol_new('MY_NEW_VOLUME', 2000) #optional max extensions given
try:
 … #model the volume
 kcs_vol.vol_save() #store the volume on the databank
finally:
 kcs_vol.vol_close() #deactivate 'current' volume

When updating an existing volume, just replace the first line with

kcs_vol.vol_open('EXISTING_VOLUME', 2000) #optional max extensions given

As you know, the Drafting application works either in the Drawing mode or in the Volume modelling mode. Activation of a
volume using one of the above methods automatically puts the application in the Volume modelling mode. Cancelling
the volume, using the kcs_vol.vol_close() function, additionally restores the application to the Drawing mode.
The same can be done by calling

kcs_vol.vol_cancel()

Once a volume is activated, you can work on it, building its shape by adding volume primitives, setting up connections,
etc. If you try to activate another volume, when a volume is already active, you will get an exception. That's why the
finally section of our pattern contains the statement kcs_vol.vol_close() (or kcs_vol.vol_cancel()),
which deactivates the current volume. After modelling a volume, you store it on the SBD_VOLUME databank by calling
the function

kcs_vol.vol_save()

8

which saves the volume under the current name, or

kcs_vol.vol_save_as(newVolumeName)

which saves the current volume under the given name, unless this name is occupied. It is possible to check the
existence of the given volume in the SBD_VOLUME databank by calling the function

kcs_vol.vol_exist(volumeName)

which returns 1, if the given volume exist in the databank, or 0, if it does not. If you still want to overwrite an existing
volume, using the function kcs_vol.vol_save_as(), you may delete it from the databank by calling

kcs_vol.vol_delete(volumeName)

If the given volume is locked, an exception is raised.

2.3 Subvolumes and volume primitives

Volumes are composed of subvolumes, which in turn are built from 3D primitives. Before you start adding volume
primitives, you have to obtain the subvolume ID, which is a simple integer number identifying the subvolume, to which
the primitives are added. If the new volume has been just initialised, it contains no subvolumes yet. Then, you should
add the first subvolume by calling

subVolID = kcs_vol.subvol_add()

The returned integer number will be then used for adding volume primitives. Of course, you may want to build your
volume from more than a single subvolume. Then, just add another subvolume, and use its ID to add some primitives. If
you activate an existing volume, it contains already some subvolumes. Then you can obtain the list of their IDs by calling

subVolList = kcs_vol.subvol_list()

Once you obtain the ID of a subvolume, you can add the volume primitive to the given subvolume using the following
pattern

… #build an instance of the Volume Primitive Creation Class
primitiveID = kcs_vol.prim_add(subVolID, volPrimitiveInstance)

L The available Volume Primitive Creation Classes are discussed in section 2.4

The kcs_vol.prim_add() function returns an integer identifying the primitive within the subvolume. You will have
to use this identifier for every later manipulation of this primitive. If you are adding the primitives yourself, then you know
their IDs. If you want to update primitives of an existing volume, you need first to obtain the list of the existing primitives
by calling

volPrimID_List = kcs_vol.prim_list(subVolID)

The returned list consists of integer numbers being the IDs of the volume primitives added to the subvolume identified by
subVolID. You can get the basic properties of the primitive following the example given below:

⇒ props = kcs_vol.vol_properties_get(subVolID, primitiveID)
colour = props.GetColour() #Colour class instance
density = props.GetDensity()
softness = propt.GetSoftness()

The props variable is an instance of the VolPrimitiveBase class, handling the properties common to all types of
volume primitives. You can update some properties, and set them to the primitive, as shown in the following example:

props = KcsVolPrimitiveBase.VolPrimitiveBase()
props.SetColour(KcsColour.Colour("Red"))
props.SetDensity(8.0E-6)
props.SetSoftness(10)

⇒ kcs_vol.vol_properties_set(subVolID, primitiveID, props)

Finally, the primitive may be deleted from the subvolume using the statement

kcs_vol.prim_delete(subVolID, primitiveID)

If you want to remove all primitives belonging to the given subvolume (and the subvolume itself), use the statement

9

kcs_vol.subvol_delete(subVolID)

2.4 Creation of volume primitives

In the previous section we have seen the function kcs_vol.prim_add(), that adds a volume primitive to the
subvolume. In order to use it, you have to create first an instance of the appropriate volume primitive creation class.
Tribon M3 Vitesse provides the following volume primitive creation classes

Class Description
VolPrimitiveBlock Axis-parallel rectangular prism

VolPrimitiveGeneralCylinder General cylinder with any closed contour as a basis. Can be also used for creating
standard cylinders with circular basis

VolPrimitiveRevolution A solid of revolution created by rotating the given contour around the specified axis
VolPrimitiveSphericalCap The fragment of the sphere obtained by splitting the sphere with the plane
VolPrimitiveTorusSegment For example, the pipeline elbow (arc segment)

VolPrimitiveTruncatedCone The bottom part of the cone obtained by splitting the cone with the plane parallel to the
cone's basis

All classes specified above have a common parent class, VolPrimitiveBase, which handles common volume
primitive properties, like the colour, density, and softness. The examples given below, show typical patterns of creating
instances of the above classes. Such instances can be then supplied to the function kcs_vol.prim_add() for
adding the primitive to the subvolume.

VolPrimitiveBlock example

primitive = KcsVolPrimitiveBlock.VolPrimitiveBlock()
Corner1 = KcsPoint3D.Point3D(0, 0, 0)
Corner2 = KcsPoint3D.Point3D(1000, 500, 200)
primitive.SetBox(Corner1, Corner2)

which defines an axis-parallel rectangular prism expanding between the given opposite corners.

VolPrimitiveGeneralCylinder examples

primitive = KcsVolPrimitiveGeneralCylinder.VolPrimitiveGeneralCylinder()
origin = KcsPoint3D.Point3D(0, 0, 200) #bottom basis origin
primitive.SetOrigin(origin)
primitive.SetHeight(500.0) #height of the cylinder
point = KcsPoint2D.Point2D(300, 0) #define the contour
basis = KcsContour2D.Contour2D(point) #of the basis
point.X = -300
basis.AddArc(point, 300)
point.X = 300
basis.AddArc(point, 300)
primitive.SetContour(basis) #set the contour of the basis

which defines a standard cylinder with circular basis (radius: 300 mm), and the height of 500 mm. The centre of the
bottom basis (the contour's (0,0) point) is located at (0, 0, 200) in the volume's coordinate system. For defining a
non-standard cylinder (with the basis being an arbitrary closed contour), you need only to change the part of the above
example, that defines the contour basis.

point = KcsPoint2D.Point2D(0, 300)
basis = KcsContour2D.Contour2D(point)
point.Y = 100
basis.AddArc(point, 100)
point.Y = -100
basis.AddLine(point)
point.Y = -300
basis.AddArc(point, 100)
point.Y = 300
basis.AddArc(point, 300)
primitive.SetContour(basis)

You can also specify the U and V axes, to simulate the rotation of the contour

10

primitive.SetUAxis(KcsVector3D.Vector3D(1, 1, 0))
primitive.SetVAxis(KcsVector3D.Vector3D(-1, 1, 0))

L The ability to specify the U and V axis direction vectors is not available for the VolPrimitiveBlock class – the
rectangular prism will be always created in an axis-parallel position.

VolPrimitiveRevolution example

origin = KcsPoint3D.Point3D(0, 0, 200)
primitive.SetOrigin(origin)
point = KcsPoint2D.Point2D(0, 0)
cont = KcsContour2D.Contour2D(point)
point.Y = 300
cont.AddLine(point)
point.SetCoordinates(500, 600)
cont.AddLine(point)
point.Y = 0
cont.AddLine(point)
point.X = 0
cont.AddLine(point)
primitive.SetContour(cont) #set the contour
primitive.SetUAxis(KcsVector3D.Vector3D(1, 0, 0))
primitive.SetVAxis(KcsVector3D.Vector3D(0, 0, 1))

VolPrimitiveSphericalCap example

primitive = KcsVolPrimitiveSphericalCap.VolPrimitiveSphericalCap()
origin = KcsPoint3D.Point3D(0, 0, 200)
primitive.SetOrigin(origin)
primitive.SetAmplitude(500.0)
primitive.SetRadius(1000.0)
U = KcsVector3D.Vector3D(0, 0, 1)
primitive.SetUAxis(U)

VolPrimitiveTorusSegment example

primitive = KcsVolPrimitiveTorusSegment.VolPrimitiveTorusSegment()
start = KcsPoint3D.Point3D(500, 0, 0)
end = KcsPoint3D.Point3D(0, 0, 500)
coord = 250.0*(math.sqrt(2.0) - 1)
amp = KcsVector3D.Vector3D(coord, 0, coord)
arc = KcsArc3D.Arc3D(start, end, amp)
primitive.SetArc(arc)

⇒ primitive.SetDiameter(100.0)

L Measuring the pipe diameter reveals the fact, that the SetDiameter() method does not set the diameter, but
the radius.

VolPrimitiveTruncatedCone example

primitive = KcsVolPrimitiveTruncatedCone.VolPrimitiveTruncatedCone()
origin = KcsPoint3D.Point3D(0, 0, 200)
primitive.SetOrigin(origin)
primitive.SetHeight(500.0)
primitive.SetDiameter(800.0, 100.0)
vec = KcsVector3D.Vector3D(1, 0, 2)
primitive.SetUAxis(vec)

L Use the Truncated Cone primitive with equal top and
bottom diameters to create the standard cylinder with
circular basis. It will be drawn without the reference lines
connecting the bases, going along the side surface,
which appear for the General Cylinder primitive.

11

The above examples show, how to set up geometrical properties of the volume primitives. Before passing the created
instance of the given volume primitive creation class to the kcs_vol.prim_add()function, you may define also
additional properties, like: the colour, density, and softness, as shown below

primitive.SetColour(KcsColour.Colour("Red"))
primitive.SetDensity(8.0E-6)
primitive.SetSoftness(10)

Exercise 1: Creating a volume

Create a volume, like in the picture to the right. You may make
the program more flexible by getting some dimensions from the
user, and applying appropriate calculations to determine the
related dimensions.

Set up two pipe connections at the ends of the pipe segments.

2.5 Connections

It is possible to define connections in the volume, which, for
example, simplifies setting up connections for equipments. The
connections are handled in Vitesse by instances of the
VolConnection class. Each connection manages the
following attributes:

• connection number (1 – 999, identifies the particular
connection of the given type),

• connection type:
� 1 – pipe connection,
� 2 – electrical connection,
� 3 – ventilation connection,

• connection point (position),
• connection direction vector,
• connection description (max. 100 characters).

In order to add a connection, you may follow the example below:

conn = KcsVolConnection.VolConnection(1, 10) #pipe connection no. 10
connPoint = KcsPoint3D.Point3D(0, 0, 500) #connection point
conn.SetPosition(connPoint)
connDirection = KcsVector3D.Vector3D(0, 0, 1) #connection direction
conn.SetDirection(connDirection)
conn.SetDescription("Description of the connection")

⇒ kcs_vol.conn_add(conn)

When creating the VolConnection class instance you provide the connection type and connection number. The
connection numbers must be unique within the given connection type, but it is quite possible to have two connections of
different type having the same connection number. The list of currently defined connection for the active volume may be
obtained by calling

connList = kcs_vol.conn_list()

The resulting list contains the VolConnection class instances, defining the volume's connections. The connections
in the list are uniquely identified by the connection type and connection number. You have to provide these two
connection attributes, if you want to remove an existing connection

conn = KcsVolConnection.VolConnection(1, 10) #pipe connection no. 10
kcs_vol.conn_delete(conn)

or obtain full information about the given connection

conn = KcsVolConnection.VolConnection(1, 10) #pipe connection no. 10
⇒ kcs_vol.conn_properties_get(conn)

print conn.GetPosition() #print out the connection position

12

After obtaining the connection's data, you can update them

position = conn.GetPosition()
position.X += 100 #move the connection by 100 mm along the X axis
conn.SetPosition(position)

⇒ kcs_vol.conn_properties_set(conn)

2.6 Placed volumes

It is possible to place a copy of the volume in the ship's model. Such a model object has only the shape, weight (and
COG) and connection information. It does not have any other production information. Most often such placed volumes
eventually will become equipments. In order to place the volume, we use the following pattern

origin = KcsPoint3D.Point3D(30000, 0, 5000)
uAxis = KcsVector3D.Vector3D(1, 0, 0) #U vector
vAxis = KcsVector3D.Vector3D(0, 0, 1) #V vector

⇒ placVolName = kcs_vol.placvol_new(unplacedVolName, origin, uAxis, vAxis)

where the placed volume name is generated automatically and returned as the function's result. You can also set your
own name for the placed volume, by providing it as the last, additional argument:

⇒ kcs_vol.placvol_new(unplacedVolName, origin, uAxis, vAxis, placVolName)

The U and V vectors define the direction in the global ship's coordinate system of the X and Y axes of the volume's
coordinate system. The origin is the location in the ship space of the origin of the volume's coordinate system.

L For compatibility reasons, Tribon M3 still provides the kcs_placvol module, but its functionality has been
included in the kcs_vol module.

13

Chapter 3

3 Equipments
The Vitesse Equipment interface contains functions for creating, placing and manipulating equipment in the model.

L The kcs_equip module is available from all Tribon modules supporting creation of equipment.

When an error is encountered during execution of functions from kcs_equip module, an exception is raised, and the
error identification string is stored in the kcs_equip.error variable.

3.1 Handling outfitting modules

The equipments, as well as the other outfitting objects, like: structures, pipes, ventilation objects, cables, and cableways,
are assigned to the outfitting modules, defining groups of logically related outfitting model objects. A module is usually
defined as a region in the ship's space; however, it can be as well an arbitrary collection of outfitting objects. The
outfitting modules are usually created using the Design Manager application. It is also possible to handle them in Vitesse
using the kcs_modelstruct module.

kcs_modelstruct.module_new(newModuleName)

This function creates a new outfitting module with the given name, that cannot be longer than 25 characters, and cannot
be empty. In order to remove a module, the following function should be used:

kcs_modelstruct.module_delete(existingModuleName)

The kcs_modelstruct module contains also other functions handling hull blocks (discussed during the Vitesse Hull
training) and outfitting systems (see section 5.1)

3.2 Activate/Build/Save process – the overview

Before you can create or update the equipment, you have to make it current. This is possible by either creating a new
equipment item or activating an existing one. The example below shows how to work on the new equipment

try:
⇒ kcs_equip.equip_new(equipmentName, moduleName) #create and activate

 try:
 … #work on the activated equipment

⇒ kcs_equip.equip_save()
 except:

⇒ kcs_equip.equip_cancel() #deactivate the equipment
⇒ kcs_equip.equip_delete(equipmentName) #incomplete – delete!

 print "Error modelling the equipment!"
except:
 print "Error creating an equipment!"

When working on an EXISTING equipment, you would rather use the following pattern:

try:
⇒ kcs_equip.equip_activate(equipmentName) #activate the equipment

 try:
 … #work on the activated equipment

⇒ kcs_equip.equip_save()
 except:

⇒ kcs_equip.equip_cancel() #deactivate the equipment
 print "Error modelling the equipment!"
except:
 print "Error creating an equipment!"

14

In both cases the equipmentName should be given in presentation format (i.e. without the project prefix). Once you
make an equipment current, you may work on it, defining its properties, and placing it at some position in the ship's
model.

After making these modifications, the equipment should be saved on the databank using the function
kcs_equip.equip_save(), which also deactivates the equipment, so that another equipment can be made
current. If you don't want to store the modifications made to an equipment, you should deactivate it using the function
kcs_equip.equip_cancel().

While the equipment is current, you can learn its name, and the name of its module (useful for building messages, and
Data Extraction command strings) by using the following functions:

equipmentName = kcs_equip.equip_name_get()
moduleName = kcs_equip.equip_module_get()

It is possible, that you will get an error, when trying to create a new equipment, because the given equipment item
already exists. It is possible to verify that using the function kcs_equip.equip_exist()

⇒ if kcs_equip.equip_exist():
 … #work on an EXISTING equipment

which returns 1, if the given equipment already exists, or 0, if it does not. If you need to remove an existing equipment
from the model, you can do it by calling kcs_equip.equip_delete(). At that time, no equipment should be
current. All connections will be automatically removed.

3.3 Setting the attributes for the current equipment item

The example given below shows the available functions for setting the properties of the current equipment.

kcs_equip.equip_component_set(componentName)
kcs_equip.equip_description_set(description)
kcs_equip.equip_room_set(roomName)
kcs_equip.equip_alias_set(aliasName)

By using them, you may set or update the component reference for the current equipment item, its description, room,
and alias name. All the arguments are strings. The component name should be valid, or an exception will be raised.

L There are no specific functions returning these properties of the current equipment. Use Data Extraction interface
to retrieve the current settings.

3.4 Placing and transforming the equipment

After creation, the current equipment is not yet placed in the model. This can be achieved using the following pattern:

Origin = KcsPoint3D.Point3D(20000, 0, 5000) #the equipment's origin
U = KcsVector3D.Vector3D(1, 0, 0) #orientation of the equipment
V = KcsVector3D.Vector3D(0, 1, 0)

⇒ kcs_equip.equip_place(Origin, U, V)

The Origin is the location in the ship's model, where the origin of the volume, defining the shape of the equipment, is
placed. The U and V vectors define the direction of the X and Y axes of the local coordinate system of this volume.

Placing an equipment does not make it appear on the drawing. In order to see the placed equipment in the model
views, you have to draw it explicitly, using the function kcs_draft.model_draw().

model = KcsModel.Model("equipment", projectName + "-" + equipmentName)
⇒ kcs_draft.model_draw(model, viewHandle)

L The Model class instance should be provided with the presentation form of the equipment name, which is
controlled by the EQUIP_NAME Drafting default. If this default is set to PROJ-NAME, then the project name (with a
dash) is added as a prefix before the equipment name. Example: TTP-AIRCON3 is the presentation name of the
equipment AIRCON3 on project TTP.

If you want to change the location of an existing equipment, do not place it again, but rather transform it using the
following pattern:

15

… #activate the equipment
trans = KcsTransformation3D.Transformation3D()
vector = KcsVector3D.Vector3D(0, 0, 1000) #displacement vector

⇒ trans.Translate(vector) #apply the displacement
origin = KcsPoint3D.Point3D(2000, 0, 7000) #origin and direction
direction = KcsVector3D.Vector3D(0, 0, 1) #of the rotation axis

⇒ trans.Rotate(origin, direction, 45) #apply the rotation by 45 degrees
⇒ kcs_equip.equip_transform(trans) #transform the equipment

Of course, you can choose the transformation to contain the displacement only, rotation only, or any other combination
of these operations.

L The equipment can be moved or rotated only. Other transformations are not allowed for this kind of outfitting
objects.

3.5 Releasing the equipment

When the equipment is 'ready', the information about it should be transferred to the production environment. The
equipment is considered 'ready', if all required settings are defined. There is a Vitesse function, that makes this test for
the current equipment, and if successful, passes the information about the equipment to the production environment.

⇒ status = kcs_equip.equip_ready()
if status == 0: #SUCCESS!
 kcs_ui.message_confirm("The equipment is ready!")
else: #FAILURE!
 kcs_ui.message_confirm("The equipment is not ready!\n"
 "Status code: %d" % status)

The returned status is an integer indicating the outcome of the operation: 0 means, that the equipment has been
marked as ready, and stored. The other values indicate various reasons for the failure of making the equipment ready:

1 – room not given 2 – subproject not given 3 – planning unit not given
4 – description not given 5 – equipment not placed

Please keep in mind, that this function also raises exceptions, when some problems are encountered. For example, it is
possible, that the equipment is ready and stored, but the transfer to PDI failed. Then, the variable kcs_equip.error
will have the value 'kcs_EquipPDITransferFailed', and although an exception has been raised, you can
consider the equipment to be marked as ready, and correctly stored.

3.6 Document references

Following the convention used in the other modelling modules of Tribon Vitesse, the kcs_equip module also offers
the functions dealing with document references attached to the equipment items. Document references are represented
in Vitesse by instances of the DocumentReference class.

… #activate an equipment
docRef = KcsDocumentReference.DocumentReference()
docRef.SetType('drawing')
docRef.SetDocument('EQUIP_DWG01')
docRef.SetPurpose(kcs_draft.kcsDWGTYPE_GEN) #Databank (General drawing)

⇒ kcs_equip.document_reference_add(docRef)
⇒ docRefList = kcs_equip.document_reference_get()

for docRef in docRefList[:]:
 if docRef.GetType() == 'vitesse': #Remove 'vitesse' references

⇒ kcs_equip.document_reference_remove(docRef)

The document references can have the following types:

• 'drawing' - reference to the Tribon drawing
• 'file' - reference to any external file
• 'vitesse' - reference to the Vitesse script
• 'document' - reference to the document stored in the external Document Management System

16

L The 'document' type references are handled using Vitesse triggers. The 'drawing' type references must have the
purpose set with the SetPurpose() method, describing the drawing databank, where the drawing is stored.

Exercise 2: Placing an equipment

Create a macro, which automatically places equipment on a foundation (a structure), according to following rules:

• If the indicated foundation has standard reference to “FOUND_1”, then the component “VTO1” is chosen.
• If the indicated foundation has standard reference to “FOUND_2”, then the component “VTO2” is chosen.
• The user should be prompted to key in the equipment name.
• Equipment should belong to the same module, as the indicated structure.
• The equipment should be placed on top of the foundation, above its COG.

L Example drawing “EQUIP_EXERCISE” contains views with structure items suitable for this exercise.

Data extraction strings:
 STRUCTURE('project').ITEM('struct').BOX
and/or
 STRUCTURE('project').ITEM('struct').COG
can be used to find the proper 3D point for placing the equipment (e.g. above the COG, at the Z level defined by
maximum Z of the extension box).

17

Chapter 4

4 Structures

4.1 Introduction

The purpose of Tribon Vitesse for Structure is to supply the programmer with simple tools to create and handle
structures in an easy way. This tool, in combination with the Data Extraction interface, is very efficient at creating general
structures that are dependent on other model objects, such as pipe or cableway hangers. The production may also be
supported by automatic assembly drawings made by 2D-drafting Vitesse.

L This module is available from all Tribon modules supporting creation of Structures

The structure-creating abilities are available from the kcs_struct module. In order to create structures from Tribon
Vitesse, the program must contain the statement

import kcs_struct

Following the convention used in the whole Vitesse API, the module provides the variable kcs_struct.error,
which is set to a string describing an error type, when one of the module's function raises an exception.

The functions from the kcs_struct module can be divided into the following main sections:

• functions acting on the complete structure object
• functions acting on the parts of the current structure

They will be discussed in details in the following sections.

	 Structures are assigned to outfitting modules. The available methods of handling the modules in Vitesse have been
described in section 3.1

4.2 Manipulating the Complete Structure

Tribon Vitesse uses the same mechanism as the actual Tribon interactive applications. Among other things, there is a
concept of the current structure, which is the implicit structure object used for many operations on the structure. You
may notice, that all other outfitting applications follow the same approach: there is the current equipment, current
volume, current pipe, current cableway, etc.

4.2.1 Activate/Build/Save process – the overview

The structure may become current either because it has been just created or activated. Below you can find the general
pattern of working with structures in Vitesse

activated = False #a flag – set to True, once the structure is activated
try:

⇒ kcs_struct.struct_new("MYSTRUCT", "MODULE", "Cyan")
 activated = True
 … #add parts, set properties, etc.

⇒ kcs_struct.struct_save()
except:
 if activated:

⇒ kcs_struct.struct_cancel()

When creating the new structure, you need to provide the structure name, module name, and colour name

L Instead of the string, the Colour class instance can be provided as the structure colour argument.

When the work on the structure is finished, the structure is saved by the kcs_struct.struct_save() function.
When an error is encountered, after the structure has been successfully activated, it is deactivated by calling the function

18

kcs_struct.struct_cancel() discarding all changes made to the structure. Both functions deactivate the
structure.

L Note that the function kcs_struct.struct_save() only saves the current structure, without performing
tests for non-unique position numbers, or for compliance of the profile endcuts with the hull profile restriction file
SBH_PROF_RESTRICT. For these purposes, separate functions are available.

Instead of using the activated variable, you may want to use nested try: … except: … statements. Just
make sure, that you don't call kcs_struct.struct_cancel(), when Vitesse failed to activate the structure.

Saving the structure does not make it appear on the model views. In order to show the newly created (or modified)
structure, the program must explicitly call the kcs_draft.model_draw() function, providing the proper
Model class instance defining the saved structure.

If, instead of creating a new structure, you want to update an existing one, just replace the call to the function
kcs_struct.struct_new() with the line similar to

kcs_struct.struct_activate("MYSTRUCT")

where you need to provide the structure name only. Either way, the structure becomes current, and we can start adding
parts, setting some properties, etc. It is an error to create or activate a structure, when another structure is current.
Unfortunately, there is no function to check, whether a structure is current, or not. You may, however, try to use any
function requiring, that a structure is current, and intercept the exception. Here is the example:

try:
⇒ structName = kcs_struct.struct_name_get()

structIsCurrent = True
except:
 structIsCurrent = False

The function kcs_struct.struct_name_get(), used in the above example, returns the name of the current
structure (useful for creating messages or Data Extraction strings), or raises an exception, if no structure is current.

When no structure is current, you can remove any given structure from the model, using the function

kcs_struct.struct_delete(structureName)

4.2.2 General Functions

All functions in this chapter require a current structure object to be established, and will raise the exception if it is not. As
it will be shown in section 4.3.2, the location of the structure is determined by the location and orientation of its parts. It is
possible to change the location (and orientation) of the current structure by using the following pattern

trans = KcsTransformation3D.Transformation3D()
… #build the transformation (see the equipment example in section 3.4)

⇒ kcs_struct.struct_transform(trans)

Parts of another structure may be copied into the current structure using the function

kcs_struct.struct_duplicate(structure)

The original structure is not affected by this operation, although you can provide the name of the current structure, and
then all parts of the current structure will be duplicated. In order to create a copy of a structure, we have to use the
following pattern:

1. Initialise the new structure (the copy).
2. Use kcs_struct.struct_duplicate(), providing the name of the original structure as the argument,

to copy all parts from the original structure.
3. Use kcs_struct.struct_transform() to move the copy away from the original, and to place it at the

right location.
4. Save the structure – the model will contain both the original and copy as two independent structures

By combining these functions in a different way, we can, for example, merge two structures together:

1. Activate the structure STRUCT_1.
2. Use kcs_struct.struct_duplicate(), providing the name of STRUCT_2 as the argument, to copy

all parts from STRUCT_2.

19

3. Save the structure STRUCT_1
4. Use kcs_struct.struct_delete(), providing the name of STRUCT_2 as the argument, to remove the

structure STRUCT_2 – only STRUCT_1 will remain, containing the parts from both structures.

L The STRUCT_KEEP_INSERT_OBJ default is NOT taken into account. The inserted structure will not be removed
from the databank if this default has the value of NO – the script must take care of it.

A structure is not drawn automatically in the drawing, when created. If you want your structure to appear in the model
views, you must call the function kcs_draft.model_draw() explicitly.

model = KcsModel.Model("struct", structName)
⇒ kcs_draft.model_draw(model, viewHandle)

L The Model class instance should be provided with the presentation form of the structure name, which is
controlled by the STRUCT_NAME Drafting default. For example, if this default is set to MOD-NAME, then the
module name (with a dash) should be added as a prefix before the structure name. Example: MOD1-FOUND
would be the presentation name of the structure FOUND in the module MOD1. The default setting of the
STRUCT_NAME default, however, is NAME – then no prefix is required.

Note: This default controls also the names of the structures, when they are created, so the structure name
provided to the Model class instance should take into account the value of the STRUCT_NAME default, which
has been used, when the structure was created.

4.2.3 Production Information

As mentioned before, the kcs_struct.struct_save() function does not perform any tests before storing the
current structure. The program may request the following tests to be done:

1. Test of compatibility of all profile endcuts in the current structure with the restrictions imposed by the hull-
profile restriction file SBH_PROF_RESTRICT.

try:
⇒ kcs_struct.struct_check_restrict()

 print "Test passed!"
except:
 print "At least one profile endcut did not pass the test!"

This function will raise the exception described as 'kcs_EndcutInvalid' if at least one profile endcut does not meet
the requirements set by the hull profile restriction file.

2. Test of uniqueness of the part position numbers

try:
⇒ kcs_struct.struct_check_posno()

 print "Test passed!"
except:
 print "At least one position number is not unique!"

This function will raise the exception described as 'kcs_PosnoDuplicate' if at least one position number has been
defined twice.

There are two functions setting the marking line on or off for the current structure:

kcs_struct.struct_marking_lines_on()
kcs_struct.struct_marking_lines_off()

By calling the function

kcs_struct.struct_assembly(assemblyPathName)

it is possible to assign the whole current structure to an assembly or remove an existing assembly reference if an empty
assembly name is given. The splitting of the current structure can be requested by calling

kcs_struct.struct_split()

Then the whole structure is transferred to the production preparation environment. The structure is transferred also to
PDI, if applicable, and remains current after the call.

20

4.3 Manipulating Parts of the Current Structure

The functions in this section help to handle structure parts. Structures are built from components, either 'real' (existing in
GCDB databank) or pseudo components. The kcs_struct module contains functions that help to generate proper
names for pseudo components, given its type and main cross-section dimensions. All other functions directly add or
modify structure parts, and therefore require that a structure is current.

4.3.1 Names of Pseudo-Components

The functions below help to generate proper names of the pseudo components used as parts of structures. The syntax
of the pseudo component names is specific to the actual component and contains the information about the type of the
component, and the cross section dimensions. If the rules of generating the pseudo component names are well known
to the programmer, he may avoid using the functions below and specify the names directly. All the functions below will
generate an exception described as 'kcs_SyntaxInvalid' if the given parameters do not allow the component
name to be generated properly. These functions do not update the current structure object.

profileCompName = kcs_struct.pseudoname_profile('F', 200, 10)
plateCompName = kcs_struct.pseudoname_plate(3.0)
holeCompName = kcs_struct.pseudoname_hole(200, 100)
holeCompName2 = kcs_struct.pseudoname_hole(200, 100, 15)

The component name of the profile in the above example will be 'F#200*10'. The first parameter is always the string
defining the profile type. Then, up to 6 additional parameters can be supplied, depending on the profile type. They will be
interpreted as the dimensions a, b, s, t, c, and u.

	 The information about the meaning of these dimensions can be found in the Tribon Hull documentation (Tribon M3
Hull → Setup and Customisation → Profiles in Tribon → About Profile Standard in Tribon → Profile Types
in Tribon)

The component name of the plate in the above example will be 'P#3'. The argument is the thickness of the plate. The
component names for the standard holes from the above example are: 'H#200*100', and 'H#200*100*15'. The
arguments are the width and height of the hole's rectangle. The last, optional argument, is the radius of the rounded
corners. If not given, the hole's rectangle will have the sharp (not rounded) corners.

4.3.2 Generating Structure Parts

The functions described in this section create or modify parts of the current structure. All changes to the parts are saved
on the databank when the whole structure is stored. Locations and directions are expressed using the Vitesse classes
Point3D, and Vector3D. Be sure to include their definitions in the program if needed.

All functions creating the parts of a structure require the component name as the first argument. It may be either the
name of a 'real' component, defined on the SB_GCDB databank, or the pseudo-component name (see section 4.3.1),

4.3.2.1 Profiles

The profile's location and orientation is determined by the material vector, and two points (start/end) defining the profile's
theoretical line. For determining the orientation of a profile, Tribon uses the following rules:
RULES:
1. The material vector is perpendicular to the first plate of the profile (first dimension), and points into the

sector occupied by the second plate (second dimension).

2. start and end points should be chosen so, that the right-handed screw moves from start towards the end
point, when turned from the material vector towards the first plate vector.

The picture below shows four example orientations of an L-bar (isometric view). Use it for studying the rules given
above. Verify each profile's position, and see if the direction of the material vector and the locations of start and end
points are in accordance with the rules given above.

21

??
Which of the four variants shown on this picture could be generated by the example code given below?

start = KcsPoint3D.Point3D(5000, 0, 0)
end = KcsPoint3D.Point3D(3000, 0, 0)
material = KcsVector3D.Vector3D(0, -1, 0)
compName = "L#100*50*10" #part component name

⇒ id = kcs_struct.profile_new_2point3D(compName, start, end, material)

This example code is also the pattern for adding the profile part to the structure. Understanding of the positioning rules,
presented above will help to set up the right orientation of the profile. The profile expands along the line connecting the
provided start and end points. The function kcs_struct.profile_new_2point3D() creates the profile part
using the provided component name, which can be the name of either a 'real' component, stored on GCDB, or of the
pseudo-component. The integer number returned by this function is the part ID of the profile part in the current structure.

The picture to the right
shows other examples
of different profiles
(pseudo-components)
available in Tribon.
Apart from verifying
again the positioning
rules, please notice
also the placement of
the theoretical line
(connecting the start
and end point),
specific to the
particular profile type.
It always passes
through the profile's
cross-section at the
points of intersection
between the vertical
and horizontal dashed
lines.

22

It is also possible to create the profile with a non-straight theoretical line, but following an arbitrary planar contour.

point = KcsPoint2D.Point2D(0, 0) #contour's point placed at 'origin'
cont = KcsContour2D.Contour2D(point)
… #build the contour shape
origin = KcsPoint3D.Point3D(20000, 0, 5000)
material = KcsVector3D.Vector3D(-1, 0, 0)
rotation = KcsVector3D.Vector3D(0, 0, 1)

⇒ id = kcs_struct.profile_new_contour2D("L#100*50*10",\
 cont, origin, material, rotation)

The rotation vector determines the direction of the X axis of the profile's
contour coordinate system.

The material vector corresponds to the Y axis of the profile's contour
coordinate system, and indicates the direction perpendicular to the first
profile's plate (first dimension) – at the first contour's segment, starting at
the origin point.

The function adds a profile part to the current structure, and returns the
part identification (integer) number. The part's shape is defined by
moving the profile's cross-section along the contour. This allows creating
bent profiles. The contour can have both the line and arc segments.

At the endpoints of the profile, endcuts can be placed, providing the
endcut type, and the corresponding parameters, which are defined by
the appropriate Tribon Hull tools.

kcs_struct.profile_endcut(profileID, endPoint, 1112, 80.0)

You need to provide the ID of the profile part, to which the endcut is added, the location (either start or end point), profile
type, and up to 6 endcut parameters. Parameters not used by the specific endcut type can be omitted. An exception will
be raised, if the given endcut type has not been predefined in the Tribon Hull environment. The end points' location of
the profile can be updated using the function

kcs_struct.profile_endpoints(profileID, newStartPoint, newEndPoint)

The points given as the function's parameters are projected onto the line connecting the original profile's end points, so
that the direction of the profile does not change. The original end point locations are known, if the Vitesse script has
created the profile, or else they can be retrieved by Data Extraction.

4.3.2.2 Plates

Plate parts are always created from the 2D contour, as shown below.

origin = KcsPoint3D.Point3D(20000, 0, 5000)
material = KcsVector3D.Vector3D(1, 0, 0)
rotation = KcsVector3D.Vector3D(0, 1, 0)
point = KcsPoint2D.Point2D(0, 0) #contour's point to be placed
cont = KcsContour2D.Contour2D(point) # … at origin
… #build the closed contour

⇒ id = kcs_struct.plate_new_contour2D("P#10", origin, material, \
 rotation, contour)

23

The function kcs_struct.plate_new_contour2D() adds a plate part in the current structure, and returns its
part identification number. The plate is defined by the 2D shape placed in the 3D model coordinate system. The
material vector defines the direction perpendicular to the plate's plane. The rotation vector determines the direction of
the X axis of the plate's contour 2D coordinate system.

After creating two adjacent plates it is possible to create a single bent plate from them by combining them with the bent
fragment having the user-defined bending radius.

… #create plates with IDs: id1, id2
⇒ id = kcs_struct.plate_bent_new(id1, point1, id2, point2, radius)

The function creates a bent plate group in the current structure, and returns its identification number. Both plates can
belong to some bent plate groups, but not to the same group.

L The plates being combined must have enough material along the side, where the bending occurs for the bend to
be created. Otherwise an error occurs.

4.3.2.3 Holes

Holes can be generated in either plates or profiles. The shape of the hole's boundary can be either standard (a rectangle
with possibly rounded corners) or arbitrary defined by the provided Contour2D class instance defining a closed contour.
First, let's see, how to create holes in plates:

centre = KcsPoint3D.Point3D(20000, 0, 5000) #hole's centre
rotation = KcsVector3D.Vector3D(1, 0, 0) #hole's height direction

⇒ id = kcs_struct.hole_new("H#400*200*20", plateID, centre, rotation)

if the hole's contour can be defines as a rectangle with possibly rounded corners, and

point = KcsPoint2D.Point2D(0, 0) #hole's contour origin
cont = KcsContour2D.Contour2D(point)
… #build the hole's closed contour
origin = KcsPoint3D.Point3D(20000, 0, 5000) #hole's origin
rotation = KcsVector3D.Vector3D(1, 0, 0) #hole's contour X-axis

⇒ id = kcs_struct.hole_new(cont, plateID, origin, rotation)

for an arbitrary hole's contour. In both cases you have to provide the ID of the plate in which the hole is made, the
reference point, at which the hole's contour is attached (origin/centre), and the rotation vector, describing the orientation
of the hole's contour on the plate.

Each profile consists of at least two plates welded together. That's why for holes in profiles we have to add one more
argument (side), indicating the profile's plate, in which the hole is made. It can take one of the following values:

• 0 – hole is created in Web side of a profile
• 1 – hole is created in Flange side of a profile
• 2 – hole is created in the opposite Flange side of a profile in the case of an I-bar

Then, the above patterns, rewritten for profiles will have the following form:

… #set up the centre and rotation
⇒ id = kcs_struct.hole_new("H#400*200*20", \

 profileID, centre, rotation, side)

for standard holes, and

… #set up the contour, centre, and rotation
⇒ id = kcs_struct.hole_new(cont, profileID, centre, rotation, side)

for arbitrary holes.

The kcs_struct.hole_new() function adds a hole to an existing plate or profile part in the current structure, and
returns the hole identification number.

24

4.3.2.4 Miscellaneous components

Finally, miscellaneous components may be added to the current structure:

origin = KcsPoint3D.Point3D(20000, 0, 5000)
route = KcsVector3D.Vector3D(0, 0, 1)
rotation = KcsVector3D.Vector3D(1, 0, 0)

⇒ id = kcs_struct.misc_comp_new(name, point, route, rotation)

This function adds a miscellaneous component part to the current structure, and returns the part identification number.
The route vector defines the direction of the Z axis, and the rotation vector – the direction of the X axis of the
coordinate system of the volume associated with the component being added.

L To be used as the structure miscellaneous component, the component given as the first argument should have the
type code of 1299XXX, and the associated volume should have the usage code of 30 or 31.

4.3.3 General Modelling Functions

The functions below perform general modelling activities such as deleting, transforming or duplicating structure parts.
The functions related to the production environment are described in the next section. All these functions require a
structure to be current, and use the ID of the structure part as an argument.

It is possible to remove a part (including holes) from the current structure by calling

kcs_struct.part_delete(partID)

In a similar manner, like for the whole structure (see also the equipment example on page 15), it is possible to transform
a single part

trans = KcsTransformation3D.Transformation3D()
… #set up the transformation
kcs_struct.part_transform(partID, trans)

or to duplicate a single part

kcs_struct.part_duplicate(anotherStructure, partID)

Then the original structure (anotherStructure) is not affected by this call. You can also duplicate parts from the current
structure by providing its name. After duplicating, it is recommended to use kcs_struct.part_transform() to
move away the copy from the original, unless the goal is to move (not copy) the parts from another structure to the
current one. In this case, however, you will also use the kcs_struct.part_delete() function to delete the
original parts from anotherStructure.

If we need to replace one part with another, we could remove the original part first, then add the new one. Very often,
however, such a replacement changes the component only, without modifying the location and orientation. In such case,
it is better to call

kcs_struct.part_component(partID, newComponent)

The new component should be of the same 'family'; i.e. a profile should be replaced by a profile, a plate by a plate, etc.
The function does not return any value.

4.3.4 Production Information

As mentioned in section 4.2.3, Tribon Vitesse can perform tests of compatibility of the profile endcuts in the current
structure with the restrictions imposed by the hull-profile restriction file SBH_PROF_RESTRICT. The function
kcs_struct.struct_check_restrict() performs this test on all profile parts. There is a function able to
perform the same test on a specific profile part.

try:
⇒ kcs_struct.part_check_restrict()

 print "Test passed!"
except:
 print "At least one of the endcuts did not pass the test!"

25

Before the structure can be transferred to the production environment (“split”), the parts should be assigned specific
position numbers, which may later be referred to in the material lists.

kcs_struct.part_posno(partID, "7") #Assign position number 7

The function kcs_struct.struct_check_posno() can be then used to verify, if the parts within the structure
have unique position numbers. Before splitting the structure, we should also assign the structure (or individually – its
parts) to the appropriate assembly. The function kcs_struct.struct_assembly() assigns the whole structure
to the assembly. We can do the same on the part level

kcs_struct.part_assembly(partID, assemblyName)

Note, that by providing an empty assembly name, we can remove an existing assembly reference for the given part.

4.4 Standard Structures

The kcs_struct module provides a set of functions for handling standard structures. A new structure may be created
from the standard structure by using the following pattern

origin = KcsPoint3D.Point3D(20000, 0, 5000)
⇒ kcs_struct.standard_input(standardName, moduleName, \

 newStructName, origin)

The function inputs a standard structure standardName into the model, creates a new structure newStructName and
marks an existing standard reference. An optional parameter origin indicates the location, at which the origin of the
standard structure is placed.

L The Drafting default STRUCT_KEEP_STAND_REF decides, whether the created structure will keep its standard
reference, or not. In order to modify the structure, you will have to remove the structure reference.

Standard structures are created by creating (and storing!) first the normal structure, and then saving its copy as a
standard structure using the function

kcs_struct.standard_output(normalStructName, stdStructName)

Once the standard reference has been established, you can use the function

kcs_struct.standard_replace(structName, stdStructName)

to update the standard reference for structure structName. The argument stdStructName is the name of the standard
structure, to which the standard reference should be set in the structure structName. By providing the name of the
same standard structure as already set you remake the structure. By providing the name of another standard structure
you replace the structure with another, created from another standard. By providing an empty name you remove an
existing standard reference – the structure structName becomes modifiable.

L After using the function kcs_struct.standard_replace(), all assembly references for the structure
structName are removed, and must be set again.

When the current structure has a standard reference, it is possible to handle some properties related to this standard
reference, including the origin

origin = KcsPoint3D.Point3D()
⇒ kcs_struct.get_standard_origin(origin)

origin.Z += 100 #update the origin location
⇒ kcs_struct.set_standard_origin(origin)

and description

⇒ descr = kcs_struct.get_standard_desc()
print "Current description:", descr
kcs_struct.set_standard_desc("New description")

4.5 Structure References (cableways)

This set of functions handles the cableways references to structures. They are available only from the Cable Modelling
application. The reference can be created by using the following pattern

26

… #model – Model class instance defining the cableway part
point = KcsPoint3D.Point3D(20000, 0, 10000) #reference location

⇒ kcs_struct.struct_cway_connect(model.Name, model.PartId, \
 point, 'CW_SUPP01')

where the cableway reference to the structure 'CW_SUPP01' is created for the cableway part indicated by the user
(cableway name – model.Name, part ID – model.PartId). The reference is placed at the given point. The height and
width of the structure is used in a fill level check.

L The part ID of ZERO means, that the structure can refer to ANY part of the cableway. Any non-zero value of the
part ID indicates the cableway part to be referred by the structure.

An existing reference can be removed by calling

kcs_struct.struct_cway_disconnect(model.Name, 'CW_SUPP01')

which requires only the cableway and structure names to be provided. If the reference exists, the cableway data can be
updated for the current structure – they define the dimensions of the structure cableway component, used for fill level
check. Additionally the node point coordinates and the direction and rotation vectors are given

nodePoint = KcsPoint3D.Point3D(0, 375, 0)
rotation = KcsVector3D.Vector3D(1, 0, 0)
route = KcsVector3D.Vector3D(0, 1, 0)
height, width, length = 1000.0, 300.0, 375.0

⇒ kcs_struct.struct_cway_data(nodePoint, route, rotation, \
 length, width, height)

L The cableway must be current.

4.6 Document references

See section 3.6 for the explanation of the document references, and their representation in Vitesse. Here, we also have
functions dealing with document references associated with structures.

docRefList = kcs_struct.document_reference_get()
kcs_struct.document_reference_add(docRef)
kcs_struct.document_reference_remove(docRef)

where docRef is an instance of the DocumentReference class, and docRefList a Python list of such instances.

Exercise 3: Creation of the plate with bolt holes

Make a Vitesse program that creates a structure with the plate component in the form of a horizontal circle with eight bolt
holes ∅12 around its perimeter. The plate is to be created in the Z-plane. The position of the plate together with the
other parameters must be input interactively by the user.

27

Chapter 5

5 Pipes
There is a single Vitesse module handling both pipe and ventilation modelling interface. It is made available to the
program by insertion of the statement

import kcs_pipe

The Vitesse Pipe / Ventilation interface includes the following functionality:

• Handling of Pipe Objects, Pipe Spools, Parts and Joints.
• Production functions like Checking, Ready and Splitting.

• Traversing functions to find Spools and Parts within Pipe.
• Routing and Material functions.
• Default handling.
• Pipe / Vent mode functions.

In a similar manner, as the other Vitesse modules, the kcs_pipe module defines the variable kcs_pipe.error.
When an exception is raised during the execution of the module's functions, the string describing the type of an error will
be stored in this variable, for analysis by the exception handlers.

Unless specified otherwise, whenever we mention Pipe Objects and its elements, the same applies to Ventilation
Objects. Moreover, there are two functions able to switch between Pipe Modelling and Ventilation Modelling modes.

kcs_pipe.pipe_mode_activate(), and
kcs_pipe.vent_mode_activate()

Both functions will raise an exception described as 'kcs_ModelIsCurrent', if the modelling work on an object of the
opposite type is not finished, and the object is still current. This means, that it is not possible to switch to Ventilation
Modelling mode, when a pipe is active. Trying to enter Pipe Modelling mode, while modelling a Ventilation Object also
raises an exception.

The functions in this module often use the instances of some pipe-specific classes that store the attributes of the
manipulated objects. One of the examples is PipeName, which contains methods for handling the conventional pipe
name consisting of the module name, subsystem name and line number. The other classes can be found in the Tribon
Vitesse User's Guide and in their source files.

5.1 Definition of pipe model structures

The pipes are categorised in modules and systems. Before a pipe is created, the corresponding module and system
objects must exist in the pipe databank. Usually creation of these items is done in the Design Manager application, but it
can be also made programmatically in Vitesse, using the kcs_modelstruct module. Functions managing outfitting
modules are described in section 3.1. Below please find the functions dealing with pipe/ventilation/cable systems.

kcs_modelstruct.system_new(systemName, description, surfacePrepCode)

The function creates a new system using the provided arguments. systemName cannot be empty, and cannot be longer
than 25 characters. The system can be removed by calling

kcs_modelstruct.system_delete(systemName)

provided, that it is empty (does not contain any pipe, ventilation or cable objects).

5.2 Pipe Object functions

The operations on Pipe Objects require that such an object is made 'current'. This is possible either by activating an
existing pipe or by creating a new one. The outcome of both functions is that a Pipe Object is active and ready to be
manipulated. This is exactly the same approach as for handling all other outfitting objects.

28

5.2.1 Activate/Build/Save process – the overview

Thus, in order to create a new pipe, we have to use the following pattern:

activated = False #a flag – if True, the pipe has been activated
try:

⇒ pipe_name = KcsPipeName.PipeName("KCS-WW17") #the new pipe name
⇒ kcs_pipe.pipe_new(pipe_name, "Cyan", "TLI", "PPBS3602SX2.9-10")

 activated = True
 … #build the pipe, set its properties, etc.

⇒ kcs_pipe.pipe_save() #save the current pipe
except:
 if activated:

⇒ kcs_pipe.pipe_cancel() #cancel the current pipe

First new feature, that we notice, is that we cannot refer to the pipe names directly. Instead, we are using an instance of
the PipeName class, that is taking care of checking the basic syntax rules of pipe names. Our pipe_name variable can
be also initialised as:

pipe_name = KcsPipeName.PipeName("KCS", "WW", 17)

where we provide individual parts of the pipe name: the module name, the system name, and the line number. It is also
acceptable to provide the pipe name, which includes the project prefix, e.g. "ES-KCS-WW17", or four arguments "ES",
"KCS", "WW", and 17. The PipeName class provides the method for getting the individual parts of the name, i.e. the
module, system, and line.

The function kcs_pipe.pipe_new() initialises a new pipe. The following information must be supplied: the pipe
name as the PipeName class instance, the pipe colour (string or Colour class instance), user identification, and the
pipe's main component. The last two arguments are optional, so if the user identification is not given or is empty, default
user identification string is used; if the pipe's main component is not given, the function tries to fetch the component
name from the diagram list. When the component name is given, the user identification must be given too, however it
can be set to an empty string, telling the function to use the default value.

If we are updating an existing pipe, then instead of calling kcs_pipe.pipe_new(), we should use

kcs_pipe.pipe_activate(name)

L In Tribon M3, the function kcs_pipe.pipe_new() accepts the fifth, optional argument, being an instance of
the SpecSearch class, defining the search criteria (project, specification, function, nominal diameter, flow, and
pressure class) and results. See an example on page 34.

Regardless of the method of activation, the pipe becomes current, and may be built, updated, and various properties
may be set. When you want to save the changes made to the pipe, you need to call kcs_pipe.pipe_save(), and
if for some reasons, the changes should be discarded, the function kcs_pipe.pipe_cancel() should be called,
provided, that the pipe has been successfully initialised or activated. After calling one of these functions, the pipe is no
longer current.

You mail fail initialising the pipe, if such a pipe already exists in the model. This can be checked by calling

pipe_name = KcsPipeName.PipeName("KCS-WW17")
⇒ if kcs_pipe.pipe_exist(pipe_name):

 … #choose another name or remove an existing pipe

Another reason of failure in activating a pipe could be, that there is already a pipe current, which has not been yet saved
or cancelled. This can be checked by trying to execute a function, that requires a pipe to be current, and intercepting an
exception, if no pipe is current.

try:
⇒ activePipe = kcs_pipe.pipe_name_get()

 print "The pipe", activePipe.GetName(), "is current!"
except:
 print "No pipe is current – we can activate a pipe!"

Please note, how to get the pipe name as a string from the PipeName class instance (activePipe variable). This can
be useful for creating messages or Data Extraction command strings.

29

If you have determined, that the given pipe exists in the model, you can delete it by calling

pipe_name = KcsPipeName.PipeName("KCS-WW17")
⇒ kcs_pipe.pipe_delete(pipe_name)

L For working with pipes you need to use the names in the form <module>–<system&line> (e.g. 'KCS-WW17').
This is also the syntax to be used for Data Extraction command strings.

On the other hand, in order to draw the pipe (kcs_draft.model_draw()), you may need to create a Model
class instance, providing the name in the presentation form <project>–<module>–<system&line> (e.g. 'ES-KCS-
WW17'). This form of the pipe name is also returned, when you identify the pipe, using
kcs_draft.model_identify(). This is controlled by the PIPE_NAME Drafting keyword.

5.2.2 General functions

When no structure is current, you can duplicate an existing pipe by calling

kcs_pipe.pipe_duplicate(existingPipeName, newPipeName)

L Note, that as an exception to the general rule, the arguments to this function are simple strings, not PipeName
class instances.

All remaining functions in this section require, that a Pipe Object is current. An exception will be raised, if it is not. In a
similar way, like for equipments, and structures, it is possible to transform the active Pipe Object

trans = KcsTransformation3D.Transformation3D()
… #build the transformation (see equipment example on page 15)

⇒ kcs_pipe.pipe_transform(trans)

This function is especially useful in combination with kcs_pipe.pipe_duplicate(), so that after duplicating you
may activate the copy and move it away from the original.

The detailed information about the active pipe can be written to the file named <subsystem><module>.res in the folder
specified by the SB_SHIPPRINT Tribon environment variable by calling

kcs_pipe.pipe_list()

This corresponds to the interactive function Pipe Æ List. Another listing, suitable for pipe modelling in batch, can be
obtained by calling

kcs_pipe.pipe_regenerate()

The function creates the PML file named <subsystem><module>.prg located in the folder specified by the
SB_PIPESCH Tribon environment variable, containing the modelling information for the active pipe. This file can be then
edited, and submitted for interpretation by the Pipe Batch Modelling facility.

Each pipe has the following production properties: the bending radius, pipe colour, sketch note, test pressure, planning
unit, and the joint, weld, heat, and surface treatment codes. They are encapsulated in Vitesse in the PipeProp class.

	 See the source file KcsPipeProp.py for details.

See, how we may update the production properties of the current pipe.

prop = KcsPipeProp.PipeProp()
prop.SetPlanningUnit("PLU01")
prop.SetTestPressure(22.0)
prop.SetHeatCode(3)
prop.SetBendingRadius(2.5)

⇒ kcs_pipe.pipe_properties_set(prop)

Only the attributes explicitly set by the appropriate methods of the PipeProp class will be set. The other attributes will
be not updated. This is a common approach in Pipe Vitesse, that first a class instance is initialised and its attributes are
set, then this instance is passed as an argument to a Vitesse function. Instead of having functions with really many
arguments, describing the individual properties, our functions accept class instance arguments, that internally hold the
information corresponding to the whole set of properties.

30

Exercise 4: Modifying the colour of pipes in the system

Ask for the pipe system name (verify it), and change the colour of all pipes in this system to the one chosen by the user.

Weldgaps can be added to the pipe spools. The function shown below sets the weldgap size to the whole pipe (to all its
spools).

kcs_pipe.pipe_weldgap_set(weldGapSize)

� The script 'Example 1.py' in the 'Vitesse Outfitting Training' subfolder under SB_PYTHON shows many
of the functions discussed so far. Take your time to study it

More examples can be found in the Vitesse\Examples\Pipe subfolder in the Tribon M3 folder tree.

5.2.3 Pipe traversing functions

The hierarchical pipe structure can be analysed using the two functions given below. The first one retrieves the parts of
the active pipe, whereas the second returns its spools. Both functions operate on an active pipe. Below you can find an
example of traversing the PART sequence of the active pipe.

#get the FIRST part ID
⇒ partInfo = kcs_pipe.pipe_part_find(1)

while partInfo[0]: #as long, as status is 1 (success) …
 partID, connectionNumber = partInfo[1], partInfo[2]
 … #work on the given part

⇒ partInfo = kcs_pipe.pipe_part_find(2, partID) #get the NEXT part ID

The first argument of the kcs_pipe.pipe_part_find() function is the activity code:

• 1 – get the ID of the FIRST part (the second argument is then irrelevant – can be omitted)
• 2 – get the ID of the NEXT part (the second argument should be the ID of the CURRENT part)
• 3 – get the ID of the PREVIOUS part (the second argument should be the ID of the CURRENT part)

The partInfo variable, returned by the kcs_pipe.pipe_part_find() function, is a tuple, consisting of the
following members:

[0] status, either 1 (the requested part has been found), or 0 (the requested part has not been found)
[1] part ID of the requested part (if status is 1)
[2] connection number in the requested part (if status is 1), that is connected to the current part

So, in order to find the ID of the LAST part, you need to walk through the sequence of parts in the forward direction, until
you get the status of ZERO. For any pipe part you can try to call this function with activity codes of 2 and 3 to get the
next and previous part. Remember to check the status, before using the other elements of the returned tuple.

L This function will return all kinds of pipe parts, including non-physical ones, like e.g. joints and connections.
Currently Vitesse has no direct support for distinguishing between various types of parts. You may, however, check
the existence or the value of some part data using Data Extraction to detect non-physical parts (e.g. component
name and total building length not available, ZERO component type, specific TYPE_STRING and PART_TYPE
values, etc.)

The observations for an example pipe with the parts: -1002 (a bend), -1003 (straight segment), and –1005 (weld joint)
show the following facts from running queries of the form PIPE.PIPM('pipe_name').PART(part_ID). … :

Data Extraction token -1002 -1003 -1005
.COMP_NAME existing component name existing component name no data available
.COMP_TYPE > 0 > 0 0
.TYPE_STRING Bend Straight pipe Weld joint
.PART_TYPE 4 3 73
.TOTBUILD_LENGTH > 0.0 > 0.0 no data available

A similar pattern can be presented for traversing the spool sequence of the current pipe.

#get the FIRST spool ID
⇒ status, spoolID = kcs_pipe.pipe_spool_find(1)

31

while status: #as long, as there are spools in the pipe (status=1)
 … #work on the given spool
 #get the NEXT spool ID

⇒ status, spoolID = kcs_pipe.pipe_spool_find(2, spoolID)

The first argument of the kcs_pipe.pipe_spool_find() function is the activity code, having a similar meaning,
like for the kcs_pipe.pipe_part_find() function, discussed above, only now spools IDs are considered, not
part IDs.

L In fact, a spool ID is an ID of one of the parts belonging to this spool.

The result of the kcs_pipe.pipe_spool_find() function is again a tuple, consisting of the status code, and the
requested spool ID. The status code indicates, whether the requested spool ID has been found (1), or not (0).

5.2.4 Document references

See section 3.6 for the explanation of the document references, and their representation in Vitesse. Here, we also have
functions dealing with document references associated with pipes.

docRefList = kcs_pipe.document_reference_get()
kcs_pipe.document_reference_add(docRef)
kcs_pipe.document_reference_remove(docRef)

where docRef is an instance of the DocumentReference class, and docRefList a Python list of such instances.

5.3 Spool functions

The functions in this section operate on pipe spools. The pipe spools are identified by spool IDs, being integer numbers.
Many functions require providing the spool ID as one of these parameters. Before using them you have to make the pipe
active.

L The spool ID is the part ID of one of the spool parts.

5.3.1 Handling spool properties

Tribon is able to handle automatic position names for spools. By calling

kcs_pipe.pipe_auto_spool_name_delete()

you can remove automatically the position names from the spools in the current pipe. Then, you can request the position
names to be automatically assigned by the system by calling

kcs_pipe.pipe_auto_spool_name_set()

All spools without a position name receive an automatically assigned position name created using the syntax defined in
the default file (SBP_MODEL_DEF Tribon environment variable). You can assign the specific position name to the
particular spool by using the following pattern

prop = KcsPipeSpoolProp.PipeSpoolProp()
prop.SetPosNo('A1') #set user-defined position name

⇒ kcs_pipe.spool_properties_set(spoolID, prop)

The function kcs_pipe.spool_properties_set() can also update other spool settings, like: the sketch note,
sketch type, heat code, surface treatment code, test pressure, and planning unit. All these properties are managed by
the PipeSpoolProp class. See an example below

prop = KcsPipeSpoolProp.PipeSpoolProp()
prop.SetSketchNote("Sketch note")
prop.SetHeatCode(1)
prop.SetSurfaceTreatmentCode(40)
prop.SetPlanningUnit("PLU01")

⇒ kcs_pipe.spool_properties_set(spoolID, prop)

The properties not set by the appropriate methods of the PipeSpoolProp class are not updated.

32

5.3.2 Handling spool weld gaps

The weld gaps can be set, removed or changed for individual spools in the current pipe.

kcs_pipe.spool_weldgap_delete(partID) #remove all weld gaps in the spool
kcs_pipe.spool_weldgap_set(partID, gapSize) #add weld gaps to a spool
kcs_pipe.spool_weldgap_edit(partID, newGapSize) #change weld gap size

The partID argument is the ID of any of the spool parts. The weld gap is removed, added, or its size changed in the
whole spool (all its parts). If set or changed, all weld gaps in a spool will have the same size. This can be changed for
individual parts, using the kcs_pipe.part_weldgap_edit() function (see section 5.4.6).

5.3.3 Traversing spool parts

In a similar way, like for parts or spools within a pipe (see section 5.2.3), we can traverse the parts within a spool

#get the ID of the FIRST part in the spool 'spoolID'
⇒ status, partID = kcs_pipe.pipe_spool_part_find(1, spoolID)

while status: #as long, as there are parts in the spool (status=1)
 … #work on the given part
 #get the ID of the NEXT part in the spool 'spoolID'

⇒ status, partID = kcs_pipe.pipe_spool_part_find(2, partID)

The first argument of the kcs_pipe.pipe_spool_part_find() function is the activity code:

• 1 – get the ID of the FIRST part in the spool (the second argument should be the spool ID)
• 2 – get the ID of the NEXT part in the spool (the second argument should be the ID of the CURRENT part)
• 3 – get the ID of the PREVIOUS part (the second argument should be the ID of the CURRENT part)

L Note, that to start the process, we have to obtain the ID of the first part in the spool by providing the spool ID as an
argument. Later on, for moving forwards or backwards in the spool, we provide the current part ID as an
argument.

The result of the kcs_pipe.pipe_spool_part_find() function is a tuple, consisting of the status code, and the
requested part ID. The status code indicates, whether the requested part ID has been found (1), or not (0).

L This function will return all kinds of spool parts, including non-physical ones, like e.g. joints and connections. See
the discussion in section 5.2.3 to learn, how to detect non-physical pipe parts.

5.4 Pipe Part functions

This is the largest part of the kcs_pipe module. Almost all the details of pipe parts and their connections to the
modelling environment can be handled by Vitesse using the functions described in this section. All of them require, that
a pipe is made active, otherwise an exception is raised.

5.4.1 Adding (inserting) and deleting parts

The component may be added to the pipe part in several ways. Various settings, determining the method of adding the
component to a pipe part are handled by the PipePartAddCriteria class. Study the examples below to
understand the possible cases.

• Adding a new pipe part connected to the given pipe part

criteria = KcsPipePartAddCriteria.PipePartAddCriteria()
criteria.SetConnType("part") #connection type
criteria.SetComponent("88.9-10-1330") #component name
criteria.SetLength(200) #part length

⇒ newPartID = kcs_pipe.part_add(partID, connectionNumber, criteria)

The new part is added to the pipe part identified by the given partID at the given connection number, using the provided
component, and part length. The function returns the ID of the created part.

33

When adding a pipe part to be connected to some external pipe part, we need to specify the partID and
connectionNumber arguments referring to THAT external pipe part, and additionally, specify the name of the external
pipe by adding one more line:

criteria.SetExternalPipe(externalPipeName)

before calling kcs_pipe.part_add() function. This modification applies also to all other methods of adding a
component to an external pipe part, presented in this section.

L The external pipe name can be given either as a string, or the PipeName class instance. Internally, the external
pipe name is stored in the PipePartAddCriteria class as the PipeName class instance with the
appropriate conversion, if string value is used.

• If the new pipe part is angled, we need also specify the direction vector of this part – direction (Vector3D).

criteria = KcsPipePartAddCriteria.PipePartAddCriteria()
criteria.SetConnType("part")
criteria.SetComponent("B26-6")
criteria.SetDirection(direction) #direction – Vector3D class instance

⇒ newPartID = kcs_pipe.part_add(partID, connectionNumber, criteria)

• Adding a surface part (direction (Vector3D) is the direction of the added pipe part, point (Point3D) is the point
on the surface)

criteria = KcsPipePartAddCriteria.PipePartAddCriteria()
criteria.SetConnType("surface")
criteria.SetComponent("88.9-10-1330")
criteria.SetDirection(direction)
criteria.SetSurfPoint(point)
criteria.SetLength(200)

⇒ newPartID = kcs_pipe.part_add(partID, criteria)

• Adding an eccentric surface part (direction (Vector3D) is the direction of the added pipe part, point (Point3D)
is the point on the surface, and orientation (Vector3D) is the orientation of the added pipe part)

criteria = KcsPipePartAddCriteria.PipePartAddCriteria()
criteria.SetConnType("surface")
criteria.SetComponent("K90-3")
criteria.SetDirection(direction)
criteria.SetOrientation(orientation)
criteria.SetSurfPoint(point)

⇒ newPartID = kcs_pipe.part_add(partID, criteria)

L Note, that in the two last cases we don't provide the connection number as the second parameter – the part is
added at the surface point.

• Adding an eccentric part (orientation (Vector3D) is the orientation of the added pipe part)

criteria = KcsPipePartAddCriteria.PipePartAddCriteria()
criteria.SetConnType("part")
criteria.SetComponent("K90-3")
criteria.SetOrientation(orientation)

⇒ newPartID = kcs_pipe.part_add(partID, connectionNumber, criteria)

As already said, each of the examples presented above has also a variant, where the connection is made to an external
pipe. Then the partID and connectionNumber should refer to the external pipe, and additionally the external pipe name
should be given by calling

criteria.SetExternalPipe(externalPipeName)

In Tribon M3, the function kcs_pipe.part_add() can be also called with the additional, last argument, being the
SpecSearch class instance.

newPartID = kcs_pipe.part_add(partID, connectionNumber, criteria, \
 specSearch), or
newPartID = kcs_pipe.part_add(partID, criteria, specSearch)

34

This class holds the Specification information. This argument can be used as follows:

import KcsSpecSearch
specSearch = KcsSpecSearch.SpecSearch() #initialise
specSearch.SetSCProject("SP") #Sets the project criterion
specSearch.SetSCSpec("WW") #Sets the specification criterion
specSearch.SetSCFunction("BALL") #Sets the function criterion
specSearch.SetNomDia(100) #Sets the nominal diameter criterion
specSearch.Search() #Perform the search …
criteria = KcsPipePartAddCriteria.PipePartAddCriteria()
… #set the criteria for adding a pipe

⇒ newPartID = kcs_pipe.part_add(partID, connectionNumber, criteria, \
 specSearch)

In a similar way, we can INSERT a new part in an existing part

criteria = KcsPipePartAddCriteria.PipePartAddCriteria()
criteria.SetComponent("PFSODIN2501PN10-200")
criteria.SetDistance(75.0)

⇒ newPartID = kcs_pipe.part_insert(partID, connectionNumber, criteria)

The criteria must specify the component name, and the distance from the connection point to the node point of inserted
part. The function returns the ID of the inserted part.

L As before, you may also use the last, optional argument specSearch, being the SpecSearch class instance.

Any part, which is 'deletable', can be removed from the active pipe. If the part to be deleted is not 'deletable', the
operation 'part to frame' must be performed, otherwise an exception will be raised. In order to actually remove the part,
just call

kcs_pipe.part_delete(partID)

5.4.2 Resizing and re-specifying parts

Sometimes, the existing parts need to be replaced by similar ones, with a different component, matching a specific
diameter, flow or pressure class. A specification, represented by an instance of the SpecSearch class, is used to find
suitable components. The specification may also be changed (kcs_pipe.part_respec()).

⇒ res = kcs_pipe.part_resize(0, partID, nominalDiameter, nominalDiameter2)
if res[0] == 0: #success!
 prevPartID, newPartID, nextPartID, operationInfo = res[1:]
else:
 print "Selection ambiguous!"

The first argument is the option, which currently should be always set to ZERO. Then, we need to provide the ID the
part being resized and the new nominal diameter nominalDiameter. The CURRENT specification is searched to find the
suitable component. If successful, the first element of the returned tuple has the value of ZERO. Otherwise, this element
has the value 1, which means, that the component is multidimensional, and the second nominal diameter
nominalDiameter2 (optional), being the nominal diameter for the connection no. 2, is required to further limit the search.

What are the other elements of the returned tuple? Apart from the status code, we have also:

[1] ID of the PREVIOUS part
[2] new ID of the CURRENT part
[3] ID of the NEXT part
[4] operation information (string)

This information can be used to iterate over the sequence of parts in the pipe to resize appropriately all parts in the pipe.
In a similar way we can re-specify the part, changing the specification for the given part.

⇒ res = kcs_pipe.part_respec(0, partID, specName, nominalDiameter2)
if res[0] == 0: #success!
 prevPartID, newPartID, nextPartID, operationInfo = res[1:]
else:
 print "Selection ambiguous!"

35

Instead of the nominal diameter (in the current specification) we provide the name of the new specification. The meaning
of the other arguments and the returned values is the same, as for the kcs_pipe.part_resize() function.

L These functions can return –1 as the ID of the previous or next, which indicates the end of the part sequence in the
particular direction.

5.4.3 Transforming pipe parts

There are several transformations available for a pipe part. First, a part may be flipped by calling

kcs_pipe.part_flip(partID)

If this is not possible, an exception described as 'kcs_FlipNotPossible' will be raised. Next, the part can be
rotated or turned by calling

kcs_pipe.part_rotate(partID, connectionNumber, Angle), or
kcs_pipe.part_turn(partID, connectionNumber, Angle)

respectively. These functions rotate and turn the particular pipe part connection. The angles are given in degrees.
Flanges of type 2601 can be also inclined using the function

kcs_pipe.part_incline(partID, direction)

where the direction vector (Vector3D) indicated the new direction of the part. Trying to use this function on another
type of part raises an exception.

5.4.4 Handling part connections

The current part may be connected to another part of the same pipe by calling

kcs_pipe.part_connect(partID1, connNo1, partID2, connNo2)

If the part no. 2 belongs to an external pipe/equipment, then the correct syntax is:

kcs_pipe.part_connect(partID1, connNo1, extName, partID2, connNo2)

where extName is the name of the external pipe/equipment to be connected. An exception is raised, if the connection
connNo1 of the given part partID1 is already connected. For disconnecting the parts you should use the function

kcs_pipe.part_disconnect(partID, connNo)

This is valid both for connections between two parts of the same pipe, and for connections between a part from the
current pipe, and a part from some external pipe/equipment. An exception is raised, if the given connection is not
connected, when this function is called.

If you want to learn the location of the given part connection, use the following pattern:

point = KcsPoint3D.Point3D()
⇒ if kcs_pipe.part_conn_coord_get(partID, connNo, point):

 … #use the connection point coordinates

The function retrieves the coordinates of the given part connection point, and updates the point argument with the
values found. The function result is the status code with the value of 1 (success) or 0 (failure). You can also determine,
which of the connections of the given part is closest to the given point (for example, indicated by the user). An example:

… #get the point from the user (Point3D)
⇒ connNo = kcs_pipe.part_conn_find(partID, point)

It is possible to learn the ID of the part connected at the given connection

connectedPartID = kcs_pipe.part_conn_part_get(partID, connNo)

If there is no connection established at the given connection number connNo, an exception is raised, described as
'kcs_ConnectedPartNotFound'.

For boss joint connections we can also change the boss connection code

36

kcs_pipe.part_boss_conn_type_set(partID, connNo, code)

where the code may take the following values:

1 – on surface 2 – insert 3 – extrude 4 – saddle 5 – none

We have also the possibility to control the spool limits at the connections of the pipe parts. To set the spool limit at the
given part connection, we should call

kcs_pipe.part_spool_limit_set(partID, connNo, 1)

and to reset it …

kcs_pipe.part_spool_limit_set(partID, connNo, 0)

5.4.5 Handling the part excess information

We can control the end excess at the pipe part connections. The end excess is set by calling

kcs_pipe.part_end_excess_set(partID, connNo, excessLength, 1)

and reset by

kcs_pipe.part_end_excess_set(partID, connNo, excessLength, 0)

Setting an end excess is the default action, so you may omit the last argument of 1. To reset the excess, you have to
provide the last argument of 0. Setting an end excess is allowed only for straight pipe parts, at the end of the pipe
material.

The similar method applies for setting/resetting the feed excess

kcs_pipe.part_feed_excess_set(partID, 1) #set the feed excess
kcs_pipe.part_feed_excess_set(partID, 0) #reset the feed excess

and the minimum feed excess for a straight pipe.

kcs_pipe.part_feed_min_set(partID, 1) #set the minimum feed excess
kcs_pipe.part_feed_min_set(partID, 0) #reset the minimum feed excess

Feed excess are allowed on straight parts only. If the minimum feed excess are not set, the default value will be fetched
from the bending machine object.

5.4.6 Handling pipe part weld gaps

The weld gaps can be set, removed or changed for individual parts in the current pipe.

kcs_pipe.part_weldgap_delete(gapPartID) #remove the given weld gap
kcs_pipe.part_weldgap_set(partID, connNo, gapSize) #add weld gap
kcs_pipe.part_weldgap_edit(gapPartID, newGapSize) #change weld gap size

The weld gap is added at the given part connection as an additional, non-physical pipe part, whose part ID (gapPartID)
is then returned by the function kcs_pipe.part_conn_part_get(partID, connNo). In Vitesse, you must
be prepared to handle also such non-physical parts in the sequence of the pipe parts. See the discussion on page 3030,
about the methods of distinguishing non-physical pipe parts from the normal pipe parts.

L Note, that for deleting or editing the weld gap, you need to provide the ID of the weld gap part itself (gapPartID),
and not the ID of the physical part, to which the weld gap is added.

5.4.7 Handling connections between pipe parts and structures

A connection between pipe parts and structures may be established by the function

kcs_pipe.part_structure_connect(partID, structureName, alias)

where alias is the structure alias name. Then, the connection may be disconnected by calling

37

kcs_pipe.part_structure_disconnect(partID, structureName)

Finally, the list of all connected structures may be obtained by using the following pattern:

⇒ structConnList = kcs_pipe.part_structure_get(partID)
for conn in structConnList: #loop over the connections
 structureName = conn.GetStructure()
 aliasName = conn.GetAlias()

The returned list consists of the instances of the ResultPipeStructConn class, holding the information about the
name and alias of the connected structures.

Tribon Vitesse offers another set of functions handling the connections between pipe parts and structures AT THE
SPECIFIC POINT (Point3D), located on the structure, and on the part's frame. To establish the connection, we have
to follow the pattern:

point = … #define the point, at which the connection is made
kcs_pipe.part_ext_structure_connect(partID, point, structureName)

The true 2-way connection is then stored in both pipe and structure. To disconnect the structure from the pipe part, use
the function

kcs_pipe.part_ext_structure_disconnect(partID, structureName)

If you wish to disconnect ALL structures connected to the given pipe part, just omit the structure name

kcs_pipe.part_ext_structure_disconnect(partID)

5.4.8 Pipe part properties

The sequence of connected pipe parts forms a branch. It is possible to get the branch number of the particular part by
calling

branchNo = kcs_pipe.part_branch_get(partID)

L Note that in the next release the name of this function may be changed to kcs_pipe.pipe_part_branch_get()

The spool name (string) of the spool, that the given part belongs to, can be obtained by calling

spoolName = kcs_pipe.pipe_spool_get(partID)

Finally, production properties can be set or updated for the given part. They are represented in Vitesse by instances of
the PipePartProp class, which handles the following information: material note, acquisition code, joint, weld, placing,
and loose codes, insulation status and insulation component name.

prop = KcsPipePartProp.PipePartProp()
prop.SetMaterialNote("Material note")
prop.SetAcquisitionCode(1)
prop.SetJointCode(3)
prop.SetInsulation("RW20") #Set insulation component

⇒ kcs_pipe.part_properties_set(partID, prop)

Only the attributes explicitly set by using the appropriate methods of the PipePartProp class are applied to the pipe
part. The remaining attributes are not update. Note, that to remove the insulation component, you should call

prop.SetInsulation("RW20", 0) #Do not use the insulation

5.5 Joint functions

Adding a joint is very similar to adding a part. Various properties of the joint are here handled by instances of the
PipeJointAddCriteria class. It determines the joint type (insert, thread, weld, mitre), direction (for angled joints),
external pipe name (for external joints), and insert distance. Study the examples given below to understand possible
cases of adding a joint.

38

• Adding a thread joint

criteria = KcsPipeJointAddCriteria.PipeJointAddCriteria()
criteria.SetJointType("thread")

⇒ JointPartID = kcs_pipe.joint_add(partID, connectionNumber, criteria)

• Adding a mitre joint (direction (Vector3D) is the joint direction)

criteria = KcsPipeJointAddCriteria.PipeJointAddCriteria()
criteria.SetJointType("mitre")
criteria.SetDirection(direction)

⇒ JointPartID = kcs_pipe.joint_add(partID, Conn, criteria)

• Adding an external joint (any kind)

criteria = KcsPipeJointAddCriteria.PipeJointAddCriteria()
… #set up joint adding criteria

⇒ criteria.SetExternalPipe(externalPipeName)
JointPartID = kcs_pipe.joint_add(partID, Conn, criteria)

L The external pipe name can be given either as a string, or the PipeName class instance. Internally, the external
pipe name is stored in the PipeJointAddCriteria class as the PipeName class instance with the
appropriate conversion, if string value is used.

In the same way, we can INSERT the joint in an existing pipe part:

criteria = KcsPipeJointAddCriteria.PipeJointAddCriteria()
criteria.SetJointType("weld")
criteria.SetDistance(100.0)

⇒ JointPartID = kcs_pipe.joint_insert(partID, connectionNumber, criteria)

Then, the criteria variable must specify the joint type ("insert" or "weld"), and the distance from the connection to the
node point of the insert. Both functions return the ID of the added or inserted joint part.

5.6 Routing functions

The routing of pipes is always a 3-stage process:

• initiate routing, providing the starting route point

• continue routing, providing (repeatedly) the intermediate route points

• end routing, providing the end route point

At each stage, the information about the point in the routing sequence is provided by the specialised class PipeRoute.
Apart from the point itself, it contains the additional attributes of the given route segment. The PipeRoute class stores
the following information: route type, free point (route from point) or surface point (route from surface) coordinates, part
ID and connection number (route from part), and the external pipe name (routing from/to external pipe).

To start the routing process, we should set up the PipeRoute class instance, and call the function
kcs_pipe.pipe_route_start(). Below you can find some examples of various possible cases.

• routing from a point (point (Point3D) – the free point)

prop = KcsPipeRoute.PipeRoute()
prop.SetRouteType('point')
prop.SetFreePoint(point)

⇒ kcs_pipe.pipe_route_start(prop)

• routing from surface (point (Point3D) – surface point, partID – ID of the pipe part)

prop = KcsPipeRoute.PipeRoute()
prop.SetRouteType('surface')
prop.SetSurfPoint(point)
prop.SetPartId(partID)
kcs_pipe.pipe_route_start(prop)

39

• routing from part (partID – ID of the pipe part, connNo – connection number)

prop = KcsPipeRoute.PipeRoute()
prop.SetRouteType('part')
prop.SetPartId(partID)
prop.SetConnection(connNo)
kcs_pipe.pipe_route_start(prop)

• routing from/to and external pipe part (any route type)

prop = KcsPipeRoute.PipeRoute()
… #set up the appropriate attributes of 'prop'

⇒ prop.SetExternalPipe(externalPipeName)
kcs_pipe.pipe_route_start(prop)

L The external pipe name can be given either as a string, or the PipeName class instance. Internally, the external
pipe name is stored in the PipeRoute class as the PipeName class instance with the appropriate conversion, if
string value is used.

The kcs_pipe.pipe_route_start() function initiates the routing process and sets up the starting point. After
starting the routing, we can add intermediate point in the route sequence by calling repeatedly the function

kcs_pipe.pipe_route_point(prop)

where we set up the variable prop (PipeRoute) in a similar way, as shown above. As a result, a new point is added to
the route sequence. Finally, one more function has to be called to end the routing process.

firstPartID, lastPartID = kcs_pipe.pipe_route_end(prop)

The function also requires an instance of the PipeRoute class to be given as an argument, thus defining the final
route point. It returns a tuple consisting of two part IDs, of the first and last frame part created. This is enough to retrieve
the whole sequence of created parts (their IDs) by using the function kcs_pipe.pipe_part_find() (see page
3030) with the activity code of 1 or 2, to get the successive part IDs.

5.7 Material functions

After creating the pipe frame, material is added to it. The details of material to be added are defined as instances of the
PipeMaterial class. This class stores the following information: method of adding the material (add material to pipe,
add to straight part, add to bent part, add mitre material), component names for the straight and bent parts (separately).

To add the material to all parts of the current pipe, use the following pattern:

prop = KcsPipeMaterial.PipeMaterial()
prop.SetStraightMaterial("88.9-10-1330") #material for straight parts
prop.SetBendMaterial("88.9-10-1330") #material for bent parts

⇒ kcs_pipe.pipe_material_set(prop)

Of course, you can set different component names for straight and bend parts. If you want to set the material for straight
parts only, or for bent parts only, specify the material type by

prop.SetType("straight"), or
prop.SetType("bend")

The example above sets the appropriate material to ALL branches of the current pipe. If you want to dress a single
branch with the given material, provide the branch number in the call to the function
kcs_pipe.pipe_material_set().

kcs_pipe.pipe_material_set(branchNumber, prop)

If the branch number is omitted, ALL branches are dressed with the given material. You can also provide the
SpecSearch class instance to specify the restrictions imposed by the Specification

kcs_pipe.pipe_material_set(branchNumber, prop, specSearch)

L See an example on page 34, about how to set up the SpecSearch class instance.

40

You can also dress specific pipe parts with the material. The example below shows, how to set up the material for a
single part

prop = KcsPipeMaterial.PipeMaterial()
… #set up the material (component names for straigh or bend parts)

⇒ newPartID = kcs_pipe.part_material_set(partID, prop)

The part can be here either a straight part or the frame bend part. If you have two straight frame parts, that connect to
the bend, you should set up the bent material, and call

newPartID = kcs_pipe.part_material_set(partID1, partID2, prop)

The similar syntax applies to setting up the mitred connection of two straight parts

prop = KcsPipeMaterial.PipeMaterial()
⇒ prop.SetType("mitre")

kcs_pipe.part_material_set(partID1, partID2, prop)

L Note, that in the last two cases you provide TWO part IDs of the straight parts, that connect, forming the bend or
mitre. For the mitred connection you DON'T provide any material, since the straight parts, that are connected are
already dressed with material – no new part is created.

The result of the kcs_pipe.part_material_set() is the ID of the new part created in place of the frame
part(s).

L This function also accepts the last argument, being the SpecSearch class instance.

You will get an error, if you try to dress with material parts, that are already dressed. If you want to dress a different
material, you should remove the existing material first. You may also consider using the functions
kcs_pipe.part_resize() or kcs_pipe.part_respect(). The function shown below removes all material
from the current pipe.

kcs_pipe.pipe_material_remove()
If you want to remove the material from the given part only, you should rather call

kcs_pipe.part_material_remove(partID)

Exercise 5: Routing a pipe over a structure

Create an application that creates the pipe route going over an obstacle (user-indicated structure) in the X-Z plane. For
determining the obstacle size and location, use the structure's extension box available through Data Extraction. The user
should be prompted to indicate the structure, a point before the structure, and a point behind the structure. An
appropriate locking should be set to guarantee, that both points lie on the same plane defined by the Y co-ordinate of the
first point. Finally, dress the frame parts with the material provided by the user.

Provide a safety distance (S) between the pipe and the extension box. It should be chosen, so that the bent part of the
pipe does not collide with the extension box of the structure.

41

5.8 Production functions

A pipe must meet many requirements, before it can be considered suitable for production. The functions in this section
perform activities related to the preparation of a pipe for production purposes.

The function kcs_pipe.pipe_check() can perform various tests on the current pipe, and return the report about
its findings. The tests are selected by calling appropriate methods of the PipeCheck class.

Test PipeCheck class
method Test PipeCheck class

method
Position name checking SetPosNoCheck() Rotation checking SetRotationCheck()
Excess checking SetExcessCheck() Joint checking SetJointCheck()
Bending checking SetBendingCheck() Extrusion checking SetExtrusionCheck()
Feed checking SetFeedCheck() Not connected connections checking SetNonConnCheck()
Frame checking SetFrameCheck() Length checking SetLengthCheck()
Loose checking SetLooseCheck() Weld gaps checking SetWeldGapsCheck()

check = KcsPipeCheck.PipeCheck()
check.SetPosNoCheck() #request the position name check
check.SetBendingCheck() #request the bending check
… #request other checks

⇒ testResults = kcs_pipe.pipe_check(check)

The function returns a list consisting of various information about the test results. The most important is the first
elements of this list – it contains the overall result of the checks:

⇒ status = testResults[0]
if status == 1: print "OK"
elif status == 2: print "OK with warnings"
elif status == 3: print "Not OK, due to controls"
elif status == 4: print "Not OK, due to other reasons"

If the status is greater than 1, we can inspect the remaining elements of the testResults list.

nMessages = testResults[1] #Number of messages
⇒ for msgInfo in testResults[2:]: #loop over the messages

 partID = msgInfo.GetPartId() #part ID
 connNo = msgInfo.GetConnection() #connection number
 msgNo = msgInfo.GetMessageNo() #message number
 msg = msgInfo.GetMessage() #message text
 print msgNo, partID, connNo, msg

Starting from the index 2, the returned list contains the instances of the ResultPipeCheck class, holding the
information about the given message (message number and text, part ID and connection number referred to by the
message).

	 The list of message numbers and associated message texts can be found in the Tribon Vitesse User's Guide in the
description of the kcs_pipe.pipe_ready() function.

There are production checks, that are performed automatically by Tribon, when the user tries to make the pipe 'ready'.
The function kcs_pipe.pipe_check_settings() activates or deactivates the specific production checks, using
an instance of the PipeCheckSettings class.

settings = KcsPipeCheckSettings.PipeCheckSettings()
settings.SetPosNoCheck()
settings.SetBendingCheck()
settings.SetExtrusionCheck()

⇒ kcs_pipe.pipe_check_settings(settings, partID)

Certain production checks are made on the specific part (bending and extrusion checks) – be sure to provide the
corresponding part ID. If you don't use these checks (position name check only) – then the function should be called with
a single argument only

kcs_pipe.pipe_check_settings(settings)

42

L By providing an argument of 0 in the SetXXXCheck() methods of the PipeCheck and PipeCheckSettings
classes, you can DISABLE the given check.

Then, when you call the function

testResults = kcs_pipe.pipe_ready()

the checks activated for the given pipe (and parts) will be performed, and a list, similar to the one returned by the
kcs_pipe.pipe_check() function, is returned. If everything is OK, the pipe is marked as 'ready' and saved on the
databank.

The background splitting job for a pipe may be started by calling

kcs_pipe.pipe_split(pipeName)
where pipeName is a PipeName class instance, defining the pipe to be splitted. This pipe has to be 'ready', and no
pipe should be current.

5.9 Miscellaneous functions

The pipe modelling system is controlled by a number of defaults stored in the file identified by the Tribon environment
variable SBP_MODEL_DEF. The kcs_pipe module provides the functions for reading and setting the defaults.

value = kcs_pipe.default_value_get("AUTOSPLIT")
kcs_pipe.default_value_set("AUTOSPLIT=EDIT_SPLIT_AND_DELETE")
… #work with the new setting
kcs_pipe.default_value_set("AUTOSPLIT=" + value) #restore the original

L The function kcs_pipe.default_value_set() sets the value of the given pipe default, for the current
process only.

While a pipe is current, we may ask for the ID of the bending machine object currently in use

bendMachObj_ID = kcs_pipe.default_bendobj_id_get()

and change the bending machine object by calling

kcs_pipe.default_bendobj_id_set(anotherBendMachObj_ID)

where we provide the ID of the new bending machine object to be used.

43

Chapter 6

6 Cables and cableways
The Tribon Vitesse Cable interface includes the functions for handling cables, cableways and cable penetrations. They
are available in the module kcs_cable. In order to use these functions, the program must import the module:

import kcs_cable

Following the convention used in the whole Vitesse API, when an exception is raised during the execution of the
module's functions, the error description is stored in the variable kcs_cable.error. The programmer is encouraged
to use try ... except ... statement, and check the value of kcs_cable.error variable in the except
clause.

Cables are assigned to the outfitting systems, and cableways to outfitting modules. These modelling structures are
usually managed by the Design Manager application, but they can be also handled by Vitesse. Functions handling
outfitting modules are described in section 3.1, and functions concerning outfitting systems – in section 5.1.

6.1 Cable functions

The operations on Cable Objects require that such an object is made 'current'. This is possible either by activating an
existing cable or by creating a new one. The outcome of both functions is that a Cable Object is active and ready to be
manipulated. This is exactly the same approach as for handling all other outfitting objects.

6.1.1 Activate/Build/Save process – the overview

In order to work with an existing cable, the following pattern can be used

activated = False #cable not active
try:

⇒ kcs_cable.cable_activate(systemName, cableName) #activate cable
 activated = True #cable made active
 … #work with the cable

⇒ kcs_cable.cable_save() #save the cable, deactivate it
except:

⇒ if activated: kcs_cable.cable_cancel()
 print "Error encountered:", kcs_cable.error

When activating a cable, you need to provide both the system name, and the cable name. All remaining functions work
on the activated cable. If you want to create a new cable, then additional activities are required:

status = 0 #not created, not active
try:

⇒ kcs_cable.cable_new(systemName, cableName) #create new cable
 status = 1 #created, but not active

⇒ kcs_cable.cable_activate(systemName, cableName) #and activate it
 status = 2 #created and active
 … #work with the cable

⇒ kcs_cable.cable_save() #save the cable, deactivate it
except:

⇒ if status == 2: kcs_cable.cable_cancel() #deactivate the cable
⇒ if status >= 1: kcs_cable.cable_delete(systemName, cableName)

 print "Error encountered:", kcs_cable.error

The status variable controls the progress of the activities. Instead, nested try: … except: … statements could be
used. After finishing the work on the cable you should save it by calling kcs_cable.cable_save(). In the case of
an error, the cable should be deactivated first with the function kcs_cable.cable_cancel(), assuming, that it
has been successfully activated. All modifications made to the cable will then be discarded. Furthermore, you can delete

44

from the databank an incompletely defined cable by calling kcs_cable.cable_delete(). Then, any existing
cable connections are automatically removed.

L Please note, that creating a new cable does not activate it – you need to call both kcs_cable.cable_new()
and kcs_cable.cable_activate().

You may fail creating a cable, if a cable with the same system and name already exists in the model. You can verify the
existence of a given cable in the databank, as shown below

⇒ if kcs_cable.cable_exist(systemName, cableName):
 … #work with the EXISTING cable

You may also fail in activating a cable, if another cable is active. There is no direct method of checking, whether a cable
is active, or not, but you may try to call a function, requiring that a cable is active, and intercepting an exception.

try:
⇒ cableName = kcs_cable.cable_name_get()
⇒ systemName = kcs_cable.cable_system_get()

 print "The cable %s in the system %s is current" % \
 (cableName, systemName)
except:
 print "No cable is current"

The functions kcs_cable.cable_name_get() and kcs_cable.cable_system_get() return the names
of the cable and of the system for the current cable. They will raise an exception, if no cable is current.

The function kcs_cable.cable_save() saves the current cable without performing any additional checks. You
can, however, request the ready checks to be performed before actually saving the cable, by calling

kcs_cable.cable_ready()

After successfully calling this function, the current cable is saved and deactivated. If the ready checks fail, an exception
is raised, and depending on their results, the kcs_cable.error variable can take the following values:
'kcs_NoLength' (cable length could not be calculated), 'kcs_CwayNotValid' (status of the referenced cableway
is not OK), 'kcs_ModelNotConnected' (the cable is not connected), 'kcs_IllegalFunction' (cable transfer to
PDI failed).

6.1.2 General functions

When a cable is active, you may set (or update) the cable component reference

kcs_cable.cable_component_set(componentName)

Then, you can connect cables to the equipments or disconnect them. For establishing the connection, you need to
provide the equipment name and the cable connection number: 1 – start point, 2 – end point

kcs_cable.cable_equipment_connect(equipmentName, connectionNumber)

An exception is raised, when the equipment is current or locked by another user. or if the given connection of the cable
is already connected. To break the connection, call the function

kcs_cable.cable_equipment_disconnect(connectionNumber)

where connectionNumber is again 1 for the start point, or 2 for the end point of the cable. The equipment should not be
current nor locked.

6.1.3 Document references

See section 3.6 for the explanation of the document references, and their representation in Vitesse. Here, we also have
functions dealing with document references associated with cables.

docRefList = kcs_cable.cable_document_reference_get()
kcs_cable.cable_document_reference_add(docRef)
kcs_cable.cable_document_reference_remove(docRef)

45

where docRef is an instance of the DocumentReference class, and docRefList a Python list of such instances.

6.2 Cableway Object functions

6.2.1 Activate/Build/Save process – the overview

Before manipulating the cableway object, it must be made 'current'. It can be done either by activating an existing
cableway, or by creating a new one. The example below shows how to work on an existing cableway

activated = False
try:

⇒ kcs_cable.cway_activate(cablewayName) #activate the cableway
 activated = True
 … #work on the cableway

⇒ kcs_cable.cway_save() #Save the changes
except:

⇒ if activated: kcs_cable.cway_cancel() #Discard the changes
 print "Error encountered:", kcs_cable.error

When activating a cableway, you need to provide the cableway name. All remaining functions work on the activated
cableway. If you want to create a new cableway, then additional activities are required:

status = 0 #not created, not activated
try:

⇒ kcs_cable.cway_new(cablewayName, moduleName, colour)
 status = 1 #created, but not activated yet

⇒ kcs_cable.cway_activate(cablewayName)
 status = 2 #created and activated
 … #work on the cableway

⇒ kcs_cable.cway_save()
except:

⇒ if status == 2: kcs_cable.cway_cancel()
⇒ if status >= 1: kcs_cable.cway_delete(cablewayName)

 print "Error encountered:", kcs_cable.error

The function kcs_cable.cway_new() initialises a new cableway in the given module, and assigns it the given
colour, which can be either a string (e.g. "White") or the Colour class instance, representing the chosen colour. The
status variable controls the progress of the activities. Instead, nested try: … except: … statements could be
used.

After finishing the work on the cableway you should save it by calling kcs_cable.cway_save(), which additionally
deactivates it. In the case of an error, the changes made to the current cableway should be discarded, and the cableway
deactivated with the function kcs_cable.cway_cancel().

Furthermore, you can delete from the databank an incompletely defined cableway by calling
kcs_cable.cway_delete(). Remember to remove first any cables from the cableway. Penetrations defined on
the cableway will be automatically removed.

L Note, that creating a new cableway does not activate it – you need to call both kcs_cable.cway_new() and
kcs_cable.cway_activate().

You may fail creating a cableway, if a cableway with the same name already exists in the model. You can verify the
existence of a given cableway in the databank, as shown below

⇒ if kcs_cable.cway_exist(cablewayName):
 … #work with the EXISTING cableway

You may also fail in activating a cableway, if another cableway is active. There is no direct method of checking, whether
a cableway is active, or not, but you may try to call a function, requiring that a cableway is active, and intercepting an
exception.

46

try:
⇒ cablewayName = kcs_cable.cway_name_get()

 print "The cableway %s is current" % cablewayName
except:
 print "No cableway is current"

The function kcs_cable.cway_name_get() returns the name of the current cableway. It will raise an exception, if
no cableway is current.

The function kcs_cable.cway_save() saves the current cableway without performing any additional checks. You
can, however, request the ready checks to be performed before actually saving the cableway, by calling

kcs_cable.cway_ready()

After successfully calling this function, the current cableway is saved (and transferred to PDI, if applicable), and
deactivated.

If the ready checks fail, an exception is raised, and depending on their result, the kcs_cable.error variable can
take the following values: 'kcs_NoPlanningUnit' – invalid planning unit, 'kcs_NoPositionNumber' – position
numbers in the cableway not assigned, or duplicated, 'kcs_NoAssembly' – assembly reference not defined,
'kcs_IllegalFunction' – the cableway should be transferred to PDI, but it failed.

6.2.2 Document references

See section 3.6 for the explanation of the document references, and their representation in Vitesse. Here, we also have
functions dealing with document references associated with cableways.

docRefList = kcs_cable.cway_document_reference_get()
kcs_cable.cway_document_reference_add(docRef)
kcs_cable.cway_document_reference_remove(docRef)

where docRef is an instance of the DocumentReference class, and docRefList a Python list of such instances.

6.2.3 Routing cableways

As for pipes, routing cableways is a 3-stage process:

• initiate routing, providing (optionally) the starting route point

• continue routing, providing (repeatedly) the intermediate route points

• end routing, providing (optionally) the end route point

All three functions given below expect a cableway to be active. Comparing to the similar activity in Pipe Vitesse, the task
is here much simpler. The general pattern is shown below:

point = KcsPoint3D.Point3D(startX, startY, startZ)
⇒ kcs_cable.cway_route_start_point(point) #initialise and set point no. 0

for n in range(1, nPoints-1): # for all intermediate route points
 … #update 'point'

⇒ kcs_cable.cway_route_point(point)
… #update 'point' – last route point

⇒ partID1, partID2, direction = kcs_cable.cway_route_end_point(point)

where partID1, and partID2 are the IDs of the first and last cableway part, that has been created. direction indicates
the order of parts, as stored in the model:

• +1 – partID1 is stored BEFORE partID2 in the cableway model
• -1 – partID1 is stored AFTER partID2 in the cableway model
• 0 – only one part has been created (partID1 == partID2)

The point arguments are optional for the functions kcs_cable.cway_route_start_point(), and
kcs_cable.cway_route_end_point(). When omitted, the route is only initialised/finalised, without adding a
point to the route sequence. Then the function kcs_cable.cway_route_point() is responsible for adding
consecutive route points. Our pattern can be then rewritten, as follows:

47

point = KcsPoint3D.Point3D()
⇒ kcs_cable.cway_route_start_point() #initialise the route sequence

for n in range(nPoints): # for ALL route points!
 … #update 'point'

⇒ kcs_cable.cway_route_point(point)
⇒ partID1, partID2, direction = kcs_cable.cway_route_end_point()

Please note, that any use of the kcs_cable.cway_route_start_point() function clears the list of the route
points, that could possibly contain some points. Other functions simply add new points to this list. After the cableway
route is stored in the current cableway, it is possible to delete some parts of it using the function

kcs_cable.cway_route_delete(startPartID, endPartID)
The function removes the part of the route in the current cableway defined as the fragment limited by the parts
startPartID and endPartID.

6.2.4 Managing cableway material

The function kcs_cable.cway_material_set() is responsible for dressing the cableway with the material. In
the simplest form, it can be used as follows:

id0, id1 = kcs_cable.cway_material_set(startPartID, endPartID, \
 straightMaterial)

Then the cableway branch fragment limited with the parts having the IDs: startPartID, and endPartID is dressed with
the straightMaterial component. If you need to specify separate components for the straight parts and the bent parts
(the corners), use the syntax:

id0, id1 = kcs_cable.cway_material_set(startPartID, endPartID, \
 straightMaterial, bendMaterial)

where bendMaterial specifies the component to be used for the corners, and the rest of the branch fragment will be
dressed with straightMaterial component. In the above cases, no space is reserved for the frame between the parts. If
you want to reserve such a space, you must supply additional arguments:

id0, id1 = kcs_cable.cway_material_set(startPartID, endPartID, \
 straightMaterial, bendMaterial, \
 startDistance, intermediateDistance, endDistance)

The startDistance argument specifies the reserved length of the frame part at the FIRST end, intermediateDistance
argument determines the space reserved for a frame after each straight part, and endDistance is the reserved length of
the frame part at the LAST end of the cableway branch fragment. These values are optional, and default to ZERO.

The material will be removed from the cableway branch fragment, if it has been dressed previously, and this function is
called with the component name given as an empty string. This function returns a tuple, consisting of the first and last
part IDs, that have been dressed. Normally, they are equal to startPartID, and endPartID, however, new parts can be
created, if the length exceeds the material length, as given in the component definition. Then the returned values will
differ from the IDs given as the function's arguments.

The straight part material can be rotated, by calling

kcs_cable.cway_material_rotate(partID, angle)

where the angle is given in degrees. Alternatively, you may specify the new rotation vector for the part, and call

rotation = KcsVector3D.Vector3D(newX, newY, newZ)
⇒ kcs_cable.cway_material_rotate(partID, rotation)

Often you need to rotate the material of all straight parts in a branch. Then, the following code may be used:

kcs_cable.cway_material_rotate_branch(partID, angle)
or

rotation = KcsVector3D.Vector3D(newX, newY, newZ)
⇒ kcs_cable.cway_material_rotate_branch(partID, rotation)

which guarantees, that all parts of a branch are in the same plane. The partID argument is the ID of one of the parts
belonging to the given branch, and identifies to branch, whose material is to be rotated.

48

6.2.5 Handling connections between cableways

The connections between cableways can be established by preparing a list of cableways allowed to connect to the
current cableway, and then requesting a connection to be made. The general pattern of this process is given below:

⇒ kcs_cable.cway_cwenv_clear() #clear the list of cableways
⇒ kcs_cable.cway_cwenv_incl("CWXX2") #add a cableway to the list

kcs_cable.cway_cwenv_incl("CWXX3") #add a cableway to the list
… #continue adding other cableways to the list

⇒ kcs_cable.cway_cwenv_connect() #establish a connection

6.2.6 Handling cables on the cableway

It is possible to get the number of cables routed on the current cableway by calling

nCables = kcs_cable.cway_check_cables()

This information can be helpful, for example, to verify it no cable is routed on the current cableway, before trying to
delete it from the databank. It is possible to remove individual cables from the current cableway:

kcs_cable.cway_remove_cable(systemName, cableName)

and if you want to remove all cables routed on the current cableway, and belonging to the given system, omit the cable
name

kcs_cable.cway_remove_cable(systemName)

Finally, if you want to remove ALL routed cables from the current cableway, omit both arguments

kcs_cable.cway_remove_cable()

L Currently, there is no function doing the reverse operation, i.e. adding the cable to the cableway.

6.2.7 Handling the whole cableway

It is possible to duplicate all parts from another cableway to the current one, which should have NO PARTS at all, when
this function is called.

kcs_cable.cway_duplicate(anotherCablewayName)

After making a copy, you probably would transform the current cableway, so that it moves away from the original. The
pattern for transforming the current cableway is given below:

transf = KcsTransformation3D.Transformation3D()
… #set up the transformation (see the equipment example on page 15)

⇒ kcs_cable.cway_transform(transf)

6.3 Default value handling

The Cable Modelling system is controlled by a number of defaults stored in the files identified by the Tribon environment
variables SBC_DEF and SBC_DEF5.

⇒ stmt = kcs_cable.default_value_get("PUT_GLAND") #get the statement
ind = stmt.find('=') #separate the string 'KEYWORD = VALUE'
value = stmt[ind+1:].strip()
print "The keyword PUT_GLAND has the value", value

⇒ kcs_cable.default_value_set("PUT_GLAND=0") #set the new value

The function kcs_cable.default_value_get() returns the whole statement in the form KEYWORD = VALUE.
Any updates made with the function kcs_cable.default_value_set() affect the current process only.

L The statements should not be longer than 80 characters.

49

6.4 Production Functions

Position names can be assigned to the parts of the current cableway by calling

kcs_cable.cway_part_posno_set("S1", partID) #assign position name 'S1'

The partID can be omitted. Then, the position names will be assigned automatically to ALL parts of the current cableway

kcs_cable.cway_part_posno_set("S") #assign position names 'S1', 'S2', …

Then, the first argument is treated as a PREFIX, and the position names will be created by concatenating this prefix with
consecutive integer numbers, starting from 1.

Sometimes, not all kinds of cables can be routed on the given cableway. This restriction can be defined by indicating
interference classes of cables, that may or may not be routed on the current cableway:

kcs_cable.cway_interference_exclude(interferenceClass1)
kcs_cable.cway_interference_permit(interferenceClass2)

You can also allow ALL interference classes of cables to be routed by calling

kcs_cable.cway_interference_permit()

It is an error to exclude the given interference class, when there are already cables with this interference class routed on
the current cableway. You should not exclude an interference class, that has been already excluded.

It is possible to assign the planning unit to the current cableway by calling

kcs_cable.cway_planning_unit_set(plu)

The function sets or replaces the planning unit assigned for the current cableway. If plu is an empty string, the planning
unit assignment will be removed.

Exercise 6: Making a cableway ready

Create an application making the user-selected cableway ready, and handling the problems such as:

• missing or invalid position names (assigns incremental position names with the user-defined prefix)

• missing or invalid planning unit (sets the user-defined planning unit)

• missing assembly reference (sets an assembly reference)

6.5 Cable Penetration Functions

Real and imaginary penetrations can be created in the cableway. Real penetrations need the height and width of the
penetration to be provided. They can be specified either explicitly, or by providing the component name. Then the
contour and dimensions stored in the component will be used. This means, that a non-rectangular penetration can be
created ONLY by providing a component name. Below please find two possible syntaxes for creating a real penetration

locationPoint = KcsPoint3D.Point3D(locX, locY, locZ)
⇒ kcs_cable.cpen_real_new(penetrationName, cablewayName, locationPoint, \

 component)
or

locationPoint = KcsPoint3D.Point3D(locX, locY, locZ)
⇒ kcs_cable.cpen_real_new(penetrationName, cablewayName, locationPoint, \

 height, width)

L Insert blocks are handled automatically, if the Cable Modelling default PUT_GLAND is set to 1

Once placed, the real penetration can be transformed in the similar way, as all other outfitting objects

transf = KcsTransformation3D.Transformation3D()
… #set up the transformation (see the equipment example on page 15)

⇒ kcs_cable.cpen_real_transform(penetrationName, transf)

50

Creating an imaginary penetration is simpler – you only need to specify the location point.

locationPoint = KcsPoint3D.Point3D(locX, locY, locZ)
⇒ kcs_cable.cpen_imag_new(penetrationName, cablewayName, locationPoint)

Finally, any kind of penetration can be deleted from the databank by calling

kcs_cable.cpen_delete(penetrationName)

