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Abstract 

Mathieu instability for a spar platform arises when there is a harmonic variation in the pitch restoring coefficients 

caused by large heave motion and the period of the heave motion is half of the pitch natural period. The pitch 

restoring coefficient can be represented by a function of the displaced volume and the metacentric height of spar hull. 

Due to heave motion, the displaced volume and the metacentric height of the spar platform change in time and this 

heave/pitch coupling can be represented by Mathieu’s equation. The objective of this study is to evaluate damping 

effects and hull/mooring/riser coupled effects on the principle instability. In the simulation, the heave/pitch coupling 

of the spar platform is considered using the modified Mathieu equation. The wave elevation effect on Mathieu 

instability is also investigated. The Mathieu instability of a practical spar platform is carefully checked by a series of 

systematic simulations and comparisons of many different scenarios. When heave resonance occurs at the heave 

natural period equal to half of the pitch natural period, Mathieu instability, a kind of lock-in phenomenon, actually 

arises to increase the pitch motion significantly. The available damping is found to be important in suppressing the 

instability. The results also show that the additional pitch restoring force from buoyancy-cans plays an important 

role in the spar Mathieu instability. 
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Introduction 

The classical spar production platform is a large circular cylinder with constant cross section and with a draft of 

approximately 200 m. The justification for the use of this enormous hull is that because of the large draft the heave 

and pitch responses of the platform are small enough to permit installation of rigid risers with dry trees. One of the 

advantages of the spar platform (classical and truss spar) is that its natural frequency is not near the peak frequency 

of the dominant wave energy. However, second - order wave effects and wind loads can excite large - amplitude 

slowly - varying resonant motions and the corresponding riser and mooring line loading. The contribution of the 

second - order wave loads to the motions and tensions plays an important role in the platform design. Thus, a 

dynamic analysis based on a reliable technique including those effects should be used for analyzing spar production 

platform. (e.g. Ran et al. (1995), Mekha et al. (1995), Cao and Zhang (1996), Kim et al. (1997), and Ran and Kim 

(1997)) In this paper, Mathieu’s instability of a classical spar is investigated for a regular wave environment and the 

typical (i.e. West Africa and North Sea) swell conditions. Swell waves with a 25-second peak period have been 

reported offshore West Africa and North Sea. Generally, a spar platform has a 27~30-second heave natural period 

and a 45~60-second pitch natural period, respectively. Due to heave and pitch motion characteristics of the spar 

platform, the spar heave natural period is near the peak period of swell waves and the pitch natural period is twice 

the peak period of swell waves. In this situation, the ratio between wave frequency heave motion and pitch natural 

period motion is in the range of the principle unstable zone of the Mathieu instability. The Mathieu instability of a 

spar platform has been studied by Haslum and Faltinsen (1999), Rho et al. (2002 and 2003) and Zhang et al. (2002). 

Haslum and Faltinsen (1999) investigated the Mathieu instability in pitch motion combined with extreme amplitude 

heave resonance using a model test and simplified calculations. They showed a stability diagram for Mathieu’s 

equation without considering pitch damping effects. Rho et al. (2002) also studied Mathieu’s instability by model 

test and numerical calculation. They performed model tests for a spar platform with a moon-pool, helical strakes, 

and damping plates. Their studies show that the additional damping from heave plates and helical strake reduce the 

heave motion and experimentally confirmed the heave/pitch coupled non-linear motion for spar platforms. Zhang et 



al. (2002) extended their studies to include pitch damping effects and developed a damped Mathieu’s stability 

diagram from Mathieu’s equation. However, Haslum and Faltinsen’s (1999), Zhang et al.’s (2002) and Rho et al.’s 

(2002) studies did not consider the effects of time-varying displacement. In Haslum’s and Rho’s studies, the 

hull/mooring/riser coupling effects are not considered. In the present study, both are included. In Haslum’s and 

Rho’s experiment, the spar model has relatively smaller KB (i.e. distance between buoyancy center and keel) 

compare to the real spar platform. However, in this study, we employed a practical spar platform design (e.g. Prislin 

et al, 1999, Ma et al., 2000, and Tahar, Ran and Kim, 2002). Fig. 1 shows inside of the spar platform. The objective 

of this study is to evaluate damping effects and hull/mooring/riser coupled effects on the principle instability. The 

effects of time-varying displacement due to relative wave and heave motions are also investigated. The Mathieu type 

instability for the spar platform is investigated for a long period regular wave environment as well as the West 

Africa and North Sea swell condition. Five different spar platforms are simulated with five different wave 

environments to capture the damping effects and hull/mooring/riser coupled effects on the principle instability.  

 

Formulation 

Description of Existing Numerical Model 

 

In a time-domain coupled dynamic analysis, the mooring and platform dynamics are solved simultaneously as an 

integrated system. The hydrodynamic forces on the platform are evaluated by diffraction theory. The first-order 

wave forces, added mass and radiation damping, and the second order mean and difference frequency forces on the 

platform are evaluated by WAMIT (Lee et al., 1999). Due to the motion characteristics of the spar, the sum-

frequency parts are not important, and thus are not included in the subsequent motion analysis. The wave-force LTF 

(linear force transfer function) and QTFs (quadratic force transfer functions) are calculated in the frequency domain, 

and then these forces are converted to the time domain using the two-term Volterra series expansion (e.g. Ran and 



Kim, 1997). The frequency-dependent radiation damping is included in the form of a convolution integral in the 

time domain simulation. 

For the static/dynamic analysis of the mooring and riser system, an extension of the theory developed for the 

dynamics of slender rods by Garrett (1982) is used in WINPOST. A brief summary of the finite element formulation 

for a slender line follows. Assuming no torque the linear momentum conservation equation with respect to a position 

vector r( s,t )r  that is a function of arc length (s) and time (t) is expressed as: 
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where prime and dot denote spatial derivative and time derivative respectively, B is bending stiffness, T the local 

effective tension, κ the local curvature, m the mass per unit length, qr  the distributed force on the rod per unit length, 

T0 the local tension, Pe  the external pressures, Pi the internal pressures, and Ae and Ai are external and internal cross 

sectional areas. The scalar variable λ can be regarded as a Lagrange multiplier. If the rod is assumed to be 

inextensible, the following condition must be satisfied; 

′ ′× =r r -1 0r r        (4) 

If the rod is extensible, the following relation is used 
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For these equations, the geometric nonlinearity is fully considered and there is no special assumption made 

concerning the shape or orientation of the mooring line, as long as the rod remains elastic. The benefit of this 

equation is that (1) is directly defined in the global coordinate system and does not require any transformations to 

the local coordinate system, (Kim et al., 1999). The normal component of the distributed external force on the rod 

per unit length, qn, is given by the generalized Morison equation, (e.g. Paulling and Webster, 1986). 
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where CI ,CD and Cm are inertia, drag and added mass coefficient, and nν& , nrν  and nr&&  are normal fluid acceleration, 

normal relative velocity, and normal structure acceleration, respectively. The symbols ρ and D are fluid density and 

local diameter. In addition, the effective weight, or net buoyancy, of the rod is included in qn as a static load.  

To develop the finite element formulation, consider a single element of length L and use the following expression; 
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where iA  and mP  are interpolation functions defined on the interval Ls ≤≤0 . Using equation (8) and (9), 

equation (1) can be reduced to the following equation (10) by the Galerkin method and integration by parts (Garrett, 

1982): 
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where it is assumed that the shape function iA is continuous on the element. The first boundary term of the right-

hand side is related to the moments on the ends, and the second term is the force on the ends, i.e. they are natural 

boundary conditions. If equation (4) is used, the result is: 
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The position vector, its tangent, and the Lagrange multiplier are selected to be continuous at a node between 

adjacent elements. The interpolation functions iA and mP are chosen to be Hermitian cubic and quadratic functions 

of s as follows; 
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where Ls /=ξ . The parameters U
r

and λ are thus: 
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Elements are combined using the continuity of rr , r ′r  and λ . The natural boundary conditions between two 

elements are canceled out, and leaving those conditions applicable at the ends of the rod. The upper ends of these 

tethers and mooring lines are connected to the hull through a generalized elastic spring that can also model both 

fixed and hinged conditions at its limit. The forces and moments proportional to the relative displacements are 

transmitted to the hull at the connection points. The transmitted forces from mooring lines to the platform are given 

by 
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where K~  is the stiffness matrix, C~ is the damping matrix,T~ is the transformation matrix between the platform 

origin and connection point, and Pu% and Iu~  are displacement vectors of the platform and connection point. 

The buoyancy-can effect inside of the spar moon-pool developed by Koo (2003). Koo (2003) modeled the multiple-

contact coupling between risers and riser guide frames using nonlinear gap spring model. The detailed derivation of 

the buoyancy-can effect inside of the spar moon-pool is available in Koo (2003). The additional restoring force from 

risers inside of the spar moon-pool using cubic spring model can be described by 

= − 3
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where Ru%  is the displacement vectors of the contact point of the riser. The Coulomb damping between riser guide 

frames and risers inside of the spar platform modeled by 
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where P3u%  and R3u%  are the vertical displacement vector of the contact point of the riser guide frame and riser, µ  is 

the frictional coefficient between riser and riser guide frame and R1F%  and R2F% are the horizontal contact force 

between riser and riser guide frame. 



The hull response equation is combined into the mooring-line equation in the time domain as follows; 
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where M~  and aM~  are structure mass and added mass, R~  is the retardation function (inverse cosine Fourier 

transform of radiation damping), HK~  is the hydrostatic restoring coefficients, DF~  is the drag force matrix on the 

hull, )1(~F  and )2(~F  are the first- and second-order wave load matrix on the hull, PF%  is the coupling force matrix 

between mooring lines and platform, RF%  is the contact force matrix between risers and riser guide frames, CF%  is the 

Coulomb damping force matrix between risers and riser guide frames and WDF~  is the wave drift damping force 

matrix. The added mass at infinite frequency is obtained from the Kramers-Kroing relation. For the time series of 

)2()1( ~,~ FF  and WDF~ , a two-term Volterra series is used. From the above time domain equation of motion, the 

hull/mooring line/riser coupled analysis can be achieved. 
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Fig. 1. Spar Hull, Buoyancy-can and Guide Frame. 



Heave and Pitch Coupling of Spar Platform 

For a spar, the pitch restoring stiffness 55K is a function of displaced volume and metacentric height GM , 

represented by ∀g GMρ  in still water. When the spar has heave motion and the heave amplitude is 3ζ , then the 

metacentric height and displaced volume are changed with heave motion and wave elevation. The metacentric 

height and displaced volume can be obtained by: 

= − −new 3 c c
1GM GM ( ( t ) ( x , y ,t ))
2

ζ η     (20) 
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where Aw is the spar water plane area, c c( x , y ,t )η is the wave elevation at center of flotation of the spar platform, xc 

and yc are the center of flotation. Based on a new metacentric height and displaced volume, the new pitch restoring 

stiffness, 55newK , can be calculated: 
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Equation (22) clearly shows heave/pitch coupling and also shows time dependence of pitch stiffness. For simplicity, 

the heave motion is assumed to be a one-term harmonic and ignore the wave elevation effect, then heave motion can 

be expressed as =3 3( t ) cos tζ ζ ω , where ω  is heave motion frequency. Thus, the pitch motion can be written as: 
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2
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where 55I  and 55A  are the pitch moment of inertia and the added pitch moment of inertia. 5ζ  and 3ζ  are pitch and 

heave motion respectively. Based on the new pitch equation (i.e. Mathieu’s equation) of motion the parameter in the 

Mathieu’s equation is defined as follows: 
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where, 5ω  is pitch natural frequency. Equation (23) through (26) are used for generate the damped Mathieu 

instability diagram. However, heave/pitch coupling of a spar platform cannot be simulated by the Mathieu equation 

due to wave elevation effects and submerged volume changes with time. Thus, in the time domain platform motion, 

equation (22) is used for 44newK  and 55newK  in Mathieu’s instability investigation. The resultant formulation (i.e. 

modified Mathieu equation) for pitch equation of motion in the time domain simulation can be expressed as: 
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Mathieu Stability Diagram 

The Mathieu equation is a special case of Hill’s equation that is a linear equation with a periodic coefficient. The 

standard form for Hill’s equation is: 

+ + =x ( p( t ))x 0α&&      (28) 

When p(t) is periodic, then it is known as Hill’s equation. For the special case =p( t ) costβ , 

+ + =x ( cos t )x 0α β&&      (29) 

it is referred to as the undamped Mathieu’s equation. A general damped Mathieu’s equation is shown as follows: 

+ + + =x cx ( cos t )x 0α β&& &      (30) 

This kind of nonlinear ordinary equation cannot be solved explicitly. However, by fixing the damping coefficient, 

zeros of infinite determinants can be found by specifying α (or β) and searching for the corresponding β (or α) that 

gives a set of results sufficiently close to zero. Two methods are available to find the parameter values for the 

parametric plane. The first is using the perturbation method and the second is using Hill’s infinite determinants 

method. Using Hill’s infinite determinants, the parametric curves can be obtained by the complex Fourier series. The 

first periodic solution of period 2π is as follow: 
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After substituting equation (31) into the damped Mathieu’s equation, equation (30), the solution for all t is: 
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This can be satisfied only if the coefficients are all zero: 
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where 
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The second periodic solution of period 4π  is determined by using 
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After substituting equation (36) into damped Mathieu’s equation, equation (30), the solution for all t is represented 

as: 
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This can be satisfied only if the coefficients are all zero: 
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This infinite set of homogeneous equations for { }ns  has non-zero solutions if the infinite determinant formed by the 

coefficients is zero; when ≠ 2nα  for any n. The infinite determinant is formed as: 



=

2 2

1 1

1 1

2 2

. . . . . . . .

. 1 0 0 0 .

. 0 1 0 0 .
0

. 0 0 1 0 .

. 0 0 0 1 .

. . . . . . . .

γ γ
γ γ

γ γ
γ γ

     (39) 

where 
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The parametric plane generated by Hill’s infinite determinant method is shown in Fig. 2 that shows that the second 

unstable region is more influenced by the damping effect than the principal unstable region. The damped Mathieu 

diagram also shows that when the damping is added to the system, the unstable regions separate from the α - axis. 

This means that the unstable region is reduced when damping is added to the system. However, when the principal 

unstable region is less influenced by damping, the principal unstable region should be examined carefully.  
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Fig. 2. Stability diagram for damped Mathieu’s equation. 



Description of Case Study 

The specifications of the spar platform used in the present study are summarized in Table 1. The spar platform has 

14 chain-wire-chain mooring lines and 23 steel vertical risers. The arrangement of mooring lines and risers are 

shown in Fig. 3. The mooring line characteristics are shown in  

Table 2. The spar platform has 18 production risers, 1 drilling riser, 2 water injection risers, 1 oil export and 1 gas 

export riser, and the riser characteristics are tabulated in Table 3. In the regular wave simulation, four different spar 

hull drag coefficients (Table 4) are used to capture the pitch damping effects on the Mathieu instability. 
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Fig. 3. Mooring lines/risers configuration and wave directions. 

Table 1. Spar hull characteristics. 

Classical Spar 914.4m (3000ft) 
Total Displacement (N) 2.163E9  
Draft (m) 198.12 
Hard Tank Depth (m) 67.06 
Well Bay Dimension (m2) 17.7 x 17.7 
KB (m) 164.6 
KG (based on Total Displacement) (m) 89.71 
Radius of Gyration (based on Total Displacement) (m) 67.36(pitch), 8.69(yaw) 
Drag Force Coefficient  1.0 
Center of Pressure for Wind Area (m) 22 
Design Depth (m) 914.4 

 



Table 2. Spar mooring system characteristics. 

Mooring Lines Dry/Wet weight (N/m) AE (KN) Added mass (N/m) 
133.4 mm K4 Studless Chain 3.71E+02 / 3.23E+02 1.33E+06 4.82E+01
136.5 mm Sheathed Wire 9.91E+01 / 1.98E+01 1.63E+06 1.98E+01

Table 3. Riser system characteristics. 

Riser No. Top Tension (KN) 
At Keel/At Top of Spar 

AE 
(KN) 

Dry/Wet Weight 
(N/m) 

Drilling 1 3.269E+03 / 4.167E+03 1.201E+07 5.95E+02 / 3.66E+02
Production 18 2.106E+03 / 2.344E+03 2.994E+06 3.01E+02 / 1.95E+02
Water Injection 2 1.362E+03 / 1.443E+03 1.837E+06 1.03E+02 / 6.46E+02
Oil Export 1 1.738E+03 / 1.872E+03 4.626E+06 2.96E+02 / 1.63E+02
Gas Export 1 8.870E+02 / 9.53E+02 4.626E+06 2.08E+02 / 7.54E+01

Table 4. Drag coefficient of the spar platform. 

Designation CASE Quantities 
CASE A 0 (pitch damping 0.03%)
CASE B 0.5 (pitch damping 1.0%)Drag coefficient 

(without mooring lines and risers) 
CASE C 2.5 (pitch damping 3.0%)

Drag coefficient 
(with mooring lines and risers) 

CASE D 
CASE E 

1.5

Description of Case Study and Environmental Conditions 

The simulation is conducted for five different spar platforms with three regular wave environments and two swell 

wave environments. It is well known that pitch damping of a spar platform is around 1% ~ 4% of the pitch critical 

damping and depends on the pitch motion amplitude. Thus, simulations are conducted in 0.03% ~ 3.52% pitch 

damping ratio. Table 6 summarizes the period and wave amplitude used in the regular wave simulation. In the 

regular wave simulation, the comparison can be divided into three categories. The first category is a comparison 

study for pitch damping effects on Mathieu instability. The second category is the comparison between no 

hull/mooring/riser coupling effects versus hull/mooring/riser effects on Mathieu instability. Because the mooring 

lines and risers are completely removed from Case A, Case B and Case C, the spar platform pitch damping ratios are 

artificially changed by using different drag coefficients for each spar platform. A zero drag coefficient is used in 



Case A, 0.5 drag coefficient is used in Case B, and 2.5 drag coefficient is used in Case C. Thus, Case A only 

considers radiation damping in the pitch direction. All the spar platforms use a heave plate with 1.5 drag coefficient 

to simplify the comparison study. All mooring lines and risers are considered in Case D and Case E, and these cases 

use 1.5 drag coefficient for the hull. The difference between the Case D and Case E is the riser modeling. The Case 

D spar uses a truncated riser at the keel and Case E uses fully modeled riser inducing the portion inside the moon-

pool. Thus, the buoyancy-can effect and Coulomb damping effects are considered in Case E. In the simulation, Case 

A, B and C are considered as freely floating structures. Systematic comparisons between the five different spar 

platforms are used to show the damping effects and hull/mooring/riser coupled effects on Mathieu instability. The 

last category is the comparison study for including wave elevation effects. The submerged volume and the 

metacentric height of the spar platform are also changed by wave elevation. If the incident wave elevation is large 

and the spar heave motion has a phase difference with the wave elevation then the wave elevation effect cannot be 

ignored. Thus, in the time domain simulation, the relative heave motion is calculated and compared to the heave 

motion without wave elevation effect. The swell wave conditions are summarized in Table 7. To generate the swell 

wave time series, a JONSWAP spectrum is used in the simulation with a value of 6.0 used for the over shooting 

parameter. CASE E is used in the swell environment conditions and the Mathieu instability is checked based on 

regular wave simulation results. 

Table 5. Summary of the spar platforms used in case study. 

 Damping Ratio (%) 
Pitch/heave Mooring Riser Coulomb Damping 

CASE A 0.03 / 0.7 w/o w/o w/o 

CASE B 1.0 / 0.7 w/o w/o w/o 

CASE C 3.0 / 0.7 w/o w/o w/o 

CASE D 3.3 / 2.72 w w/t w/o 

CASE E 3.3 / 3.44 w w/f w 

Notes: 

w/o = without consideration; w = with consideration 

w/t = consider riser as truncated model, w/f = consider riser as fully modeled  



Table 6. Regular wave condition. 

 T (sec) Wave amplitude (m) 
RW-A 26.0 6.00 ~7.00 

RW-B 27.8 1.50 ~ 7.00 

RW-C 22.7 7.00 

Notes:RW = regular wave 

Table 7. Swell environment condition. 

 Hs (m) Tp (sec) γ 
Swell-A 2.5 23 6.0 

Swell-B 1.7 25 6.0 

 

Numerical Results and Discussion 

Free Decay Simulation 

To evaluate the heave and pitch damping ratio and natural period of the spar platform, free decay simulations are 

conducted. Fig. 4 shows the pitch free decay simulation results. To capture the different damping ratio, different 

drag coefficients are given for each spar hull. In Case A, the spar hull drag coefficient is 0.0 thus, only radiation 

damping is considered in this case. Case B and C use 0.5 and 2.5 drag coefficient so that the spar damping ratio is 

1.0% and 3.0% respectively. As mentioned before, Case D and E use the same drag coefficient but different riser 

modeling. The fully modeled riser (Case E) has a small pitch natural period and slightly larger damping ratio 

compared with truncated riser model (see Table 8) because of the effects of riser-gap contact. Fig. 5 shows the heave 

free decay results for all cases. In the Case E simulation, the spar platform initially tilted in pitch and roll directions, 

and it has additional damping from Coulomb friction. The results (see Table 9) show that most of the heave damping 

in a classical spar platform comes from the mooring lines. From free decay simulation results, it is interesting to 

notice that the heave damping from the mooring lines is important for the classical spar platform. The heave 

damping from coulomb friction is relatively small but not negligible. The results shows that, heave natural period of 



the spar platform is half of the pitch natural period except for Case E, thus strong Mathieu instability is expected in 

the heave resonance zone.  

Based on this free decay test, pitch and heave damping effects on the principle unstable zone in the Mathieu 

instability are investigated in the following regular wave simulation.  
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Fig. 4. Pitch free decay simulation results. 

Table 8. Pitch motion natural periods and damping ratios.  

 CASE A CASE B CASE C CASE D CASE E 
TN (sec) 57.6 57.6 57.6 57.6 45.5 

ς (%) 0.03 1.01 2.99 3.28 3.52 
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Fig. 5. Heave free decay results. 

 

Table 9. Heave motion natural periods and damping ratio. 

 CASE A CASE B CASE C CASE D CASE E 
TN (sec) 27.8 27.8 27.8 27.8 27.8 

ς (%) 0.77 0.77 0.77 2.72 3.44

 

Mathieu’s Instability in Regular Waves 

Slightly Off Resonance –Slightly Off Instability Condition 

The results of regular wave simulation A (RW-A) are shown in Table 10, Table 11, Fig. 6 and through Fig. 12. To 

capture the Mathieu instability, simulations are conducted with varying wave amplitudes. In 6.0-meter regular wave 

amplitude simulation, the Mathieu instability is triggered in Case A and B. Fig. 6 shows the result from the Case A 

spar platform. Fig. 6 clearly shows that pitch motion is drastically increased after 2000 seconds. The pitch response 

spectrum, Fig. 6, shows the largest peak exists in the pitch natural period zone even in the 26.0 seconds long period 

wave environment. It is interesting to notice that heave motion is also disturbed after the large pitch motion is started. 

This clearly shows that the wave energy transfers to heave and pitch motion turn by turn (see Fig. 7). Table 10 

summarizes the statistical results from the simulation. The comparison between Case A and Case B statistical results, 



in Table 10, show that the 1% pitch damping ratio is not enough to suppress the Mathieu instability. Thus, when the 

heave motion is larger than 8.0-meter the Mathieu instability is triggered in Case A and B. However, 8.0-meter 

heave motion is not enough to trigger the Mathieu instability in Case C mainly because of large pitch damping. On 

the other hand, Fig. 8 shows spar heave and pitch motion without time varying pitch hydrostatic coefficient (i.e. 

constant pitch hydrostatic restoring coefficient), and this result shows that constant pitch hydrostatic restoring 

coefficient can not generate the Mathieu instability and significantly underestimates the pitch motion of the spar 

platform. To clarify Mathieu instability, the detailed time series are shown in Fig. 7. The pitch motion time series 

shows that the pitch motion is stable up to 1000 sec. The pitch time series in Fig. 7 shows that the pitch motion has 

the same period as the regular wave period (i.e. 26 sec) in first 1000 sec, but after 1000 sec the pitch motion is 

disturbed. The reason is that the large heave motion changes the pitch restoring moment. Fig. 7 shows that the pitch 

motion gradually increases by the superposition of two adjacent motion peaks and, it doubles the amplitude of pitch 

motion as well as period. After two pitch motion peaks are superposed, the pitch motion drastically increased 

because motion becomes the pitch natural period motion. Fig. 7 clearly shows that the Mathieu instability resemble 

the lock-in phenomena. When pitch motion is increased by Mathieu instability, the large pitch motion also disturbs 

the heave motion. Fig. 7 shows the disturbed heave motion for Case A, and Fig. 9 shows the pitch response time 

series for Case B Spar platform. It is interesting to notice that the Case B spar has Mathieu instability in pitch 

motion, but the tendency of pitch motions are different from Case A. This is caused by the damping effect on pitch 

motion. As mentioned before, the Case B and Case C spar platform have 1% and 3% damping ratio in pitch motion 

respectively. When Mathieu instability occurs in Case B, a 1% pitch damping maintains the pitch motion as stable 

rather than unstable. This tendency is also shown in experiment by Rho (2003). The results for Case D and Case E 

are shown in Fig. 11 and Fig. 12 and summarized in Table 11. Because Case D and Case E include the mooring lines 

and risers, a larger wave amplitude (= 7.0m) is used in the simulation. Fig. 11 shows that the damping from mooring 

lines and risers, and the result from Case D spar has the same tendency as Case C simulation. The Case C and D spar 

have a small disturbance in pitch motion (i.e. 3000 sec – 6000 sec), but the pitch motion of the Case E spar does not 



show any disturbance in pitch motion. It is because the Case D spar uses the truncated riser model, consequently, 

does not change the pitch natural periods. However, Case E Spar considers buoyancy-can effect, and it can shift the 

pitch natural period. The buoyancy-can effects on the Mathieu instability are more clearly shown in the following 

RW-B simulation in which wave period in which wave period is even closer to the half of the pitch natural period 

with smaller incident wave heights. 

Table 10. Comparison of the statistics (Regular wave simulation A). 

RW A: T = 26 sec amp. = 6.0 m 
 CASEA CASE B CASE C 
 HEAVE PITCH HEAVE PITCH HEAVE PITCH 

UNIT m deg. m deg. m deg. 

MEAN 7.03E-02 -5.94E-02 7.65E-02 -6.08E-02 7.92E-02 -6.55E-02

STD 5.05E+00 5.63E+00 5.49E+00 5.39E+00 5.61E+00 1.20E+00

EXE 8.23E+00 1.80E+01 8.23E+00 1.18E+01 8.23E+00 1.85E+00

Notes: STD = standard deviation; EXE = extreme 

Table 11. Comparison of the statistics (Regular wave simulation A). 

RW A: T = 26 sec, amp. = 7.0 m 
 CASE D CASE E 
 HEAVE PITCH HEAVE PITCH 

UNIT m deg. m deg. 

MEAN 4.31E-02 -1.68E-01 -2.55E-02 -1.80E-01

STD 5.68E+00 1.43E+00 5.58E+00 1.65E+00

EXE 8.06E+00 -2.21E+00 7.94E+00 -2.51E+00

Notes: STD = standard deviation; EXE = extreme 
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Fig. 6. Heave/Pitch motions (CASE A: Tp = 26 sec, amp. = 6.0 m). 
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Fig. 7. Heave/Pitch response time series (1000 sec – 4000 sec). 
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Fig. 8. Heave/Pitch motions without time varying restoring coefficient (CASE A: Tp = 26 sec, amp. = 6.0 m). 
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Fig. 9. Spar heave and pitch motions (CASE B: Tp = 26 sec, amp. = 6.0 m). 
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Fig. 10. Spar heave and pitch motions (CASE C: Tp = 26 sec, amp. = 6.0 m). 
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Fig. 11. Spar heave and pitch motions (CASE D: Tp = 26 sec, amp. = 7.0 m). 
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Fig. 12. Spar heave and pitch motions (CASE E: Tp = 26 sec, amp. = 7.0 m). 

Heave Resonance Condition and TPitch/THeave very close to 1/2 

To confirm the spar platform stability, the heave resonance zone is investigated in the RW-B simulation. As 

mentioned before, RW-B uses a 27.8 sec wave period and this wave period is exactly the same as the heave natural 

period and closer to half of the pitch natural period. The simulation results are shown in Fig. 13 through Fig. 18 and 

summarized in Table 12 and Table 13. In the simulation, the result from Case A spar platform is not available due to 

the absence of damping, thus unrealistically modeled. The Case B simulation results in Fig. 13 show that small 

amplitude waves generate heave motion larger than 8.0 m causing the Mathieu instability. This means that 1% pitch 

damping ratio is not enough to suppress the Mathieu instability. The CASE C spar simulation results in Fig. 14 show 

that the Case C spar also has Mathieu instability when heave motion is larger than 8.0 m. It is interesting to notice 

that, in RW-A case, the Case C spar does not exhibit Mathieu instability with 3% damping, but, in RW-B case, the 

Case C Spar has Mathieu instability. The reason is that, in RW-B case, the α factor is 0.25 where the most severe 



Mathieu instability occurs. The Case C Spar in the 2.0 m wave amplitudes is shown in Fig. 15. The results show 

similar trend but the instability is triggered earlier. This means that 3% pitch damping ratio can keep the pitch 

resonance motion stable after the Mathieu instability is occurs. 

The simulation results for the Case D and E spar platforms with larger wave amplitude (= 7m) are shown in Fig. 16 

through Fig. 19. The Case D spar results show Mathieu instability due to large heave motion and 0.25 alpha factors. 

However, the detailed time series for pitch motion shows that Mathieu instability occurs after 2000 sec, but, due to 

pitch damping effect (3.3%), the superposition of two adjacent peaks cannot be fully developed as the resonant 

motion. It clearly shows that the pitch damping dampened the pitch resonance from Mathieu instability. The 

Mathieu instability is not triggered in the Case E spar even with a 11.3 m heave motion because the condition of 

Mathieu instability is not met that is the additional restoring moment from buoyancy-can effect changes the pitch 

natural period of motion and it avoids the critical α factor (i.e. 0.25). Fig. 18 clearly shows that the pitch motion of 

the Case E spar platform only has wave frequency motion. This result clearly shows the buoyancy-can pitch natural 

period shifting effects on Mathieu instability. It shows that in the same heave motion Case D has Mathieu instability 

but Case E does not have Mathieu instability. To ensure stability of Case E spar, a 22.7 second regular wave 

simulation is conducted. In the 22.7 sec wave period, Case E spar has 0.25 α factor. However, the results show that 

heave motion of the Case E Spar is not large even when a 7-meter wave amplitude is used. It can be attributed to the 

Coulomb damping from the contact of risers and riser guides. The RW-A and RW-B simulation results show that 

buoyancy-can effects play a very important role in Mathieu instability analysis for the spar platform. Thus, without 

proper modeling of risers and mooring lines in the simulation and experiment may lead to incorrect results under 

certain conditions. The wave amplitudes and periods used in the simulation are not practical unless long-period 

swells are involved but can be demonstrated in the laboratory (Rho et al. (2002)). Based on the regular wave 

simulation results, in the following section, Mathieu instability in a spar platform is checked for a swell environment. 

  

 



Table 12. Comparison of statistics (Regular wave simulation B). 

 RW B: T = 27.8 sec, amp. = 1.5 amp. = 2.0 
 CASE B CASEC CASE C 
 HEAVE PITCH HEAVE PITCH HEAVE PITCH 

UNIT m deg. m deg. m deg. 

MEAN 7.40E-03 -2.11E-02 6.84E-03 -2.14E-02 1.24E-03 -2.65E-02

STD 4.82E+00 3.02E+00 4.82E+00 5.37E-01 6.11E+00 1.93E+00

EXE -8.07E+00 -7.17E+00 -8.07E+00 -1.58E+00 9.83E+00 3.47E+00

Notes:STD = standard deviation; EXE = extreme 

Table 13. Comparison of statistics (Regular wave simulation B and C). 

RW B: T = 27.8 sec, amp. = 7.0 T = 22.7 
 CASE D CASE E CASE E 
 HEAVE PITCH HEAVE PITCH HEAVE PITCH 

UNIT m deg. m deg. m deg. 

MEAN -2.55E-02 -3.20E-01 -1.52E-02 -3.28E-01 1.05E-01 -7.83E-02

STD 8.12E+00 2.87E+00 7.96E+00 2.01E+00 1.59E+00 1.58E+00

EXE 1.15E+01 -6.36E+00 1.13E+01 -3.15E+00 2.38E+00 -2.31E+00

Notes:STD = standard deviation; EXE = extreme 
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Fig. 13. Spar heave and pitch motions (CASE B: Tp = 27.8 sec, amp. = 1.5 m). 
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Fig. 14. Spar heave and pitch motions (CASE C: Tp = 27.8 sec, amp. = 1.5 m). 
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Fig. 15. Spar heave and pitch motions (CASE C: Tp = 27.8 sec, amp. = 2.0 m). 
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Fig. 16. Spar heave and pitch motions (CASE D: Tp = 27.8 sec, amp. = 7.0 m). 
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Fig. 17. Heave/Pitch response time series (1000 sec – 5000 sec). 
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Fig. 18. Spar heave and pitch motions (CASE E: Tp = 27.8 sec, amp. = 7.0 m). 
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Fig. 19. Spar heave and pitch motions (CASE E: Tp = 22.7 sec, amp. = 7.0 m). 

Wave Elevation Effect on Mathieu Instability 

The results from RW-A and RW-B clearly show the pitch damping effects and hull/mooring/riser coupling effects 

on the Mathieu instability of the spar platform. The result of Case C spar platform in the RW-A simulation, the spar 

is very stable which means that 3% of pitch damping is large enough to suppress the Mathieu instability. However, 

the regular wave simulations (RW-A and RW-B) do not consider the wave elevation effect. If the wave elevation is 

not large then the wave elevation effect is not important, but if the wave elevation is large and the spar platform 

heave motion has phase difference with wave elevation then the submerged volume and metacentric height of the 

spar platform are significantly affected by wave elevation. To capture the wave elevation effects on the Mathieu 

instability, simulations are conducted for Case C spar in RW-A wave and Case E spar in 22.7 sec regular wave. The 

results are shown in Fig. 20 and Fig. 21. Fig. 20 shows that the wave elevation and heave motion have almost a 180 

degree phase difference. Due to the phase difference, heave motion with respect to wave elevation is almost 14 m. 



Thus, the results show that Mathieu instability is triggered in pitch motion. This result clearly shows the wave 

elevation effect on the Mathieu instability. Thus, in this situation (i.e. large wave amplitude and large phase 

difference), wave elevation effect has to be considered in the Mathieu instability analysis. However, Fig. 21 shows 

that Case E spar does not experience Mathieu instability. The reason is that the relative heave motion (= 9.0 m) is 

not large enough to trigger the Mathieu instability. It has been already shown in previous simulation (i.e. RW-B, 

Case E).  
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Fig. 20. Regular wave simulation results include wave elevation effect (CASE C: Tp = 26.0 sec, amp. = 6.0 m).  
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Fig. 21. Regular wave simulation results including wave elevation effect (CASE E: Tp = 22.7 sec, amp. = 7.0 

m).  

Mathieu Instability in Swell Condition 

Fig. 22 and Fig. 23 show the swell wave spectrum and time series which are used in the simulation. The Swell-A 

and Swell- B (typical of West Africa and North Sea) simulation results are shown in Fig. 24 through Fig. 29 and 

summarized in Table 14 and Table 15. The wave elevation effect is considered in the swell wave simulation (Swell-



A and Swell-B). However, the wave elevations are not large in the swell wave environment, thus the wave elevation 

effect is not large. The maximum wave elevation is 2.4 m in Swell-A and 1.6 m in Swell-B. Based on the regular 

wave simulation (RW-A and RW-B), Mathieu instability is not triggered in CASE E Spar even in large heave 

motion. The Swell-A and Swell-B simulation results show that the maximum heave motion is around 1.7 ~ 1.9 m 

and maximum pitch motion is around 0.6 ~ 0.7 degree. The ranges of heave and pitch motion in the regular wave 

simulation results show that the spar platform is very stable. It shows that the spar platform does not have Mathieu 

instability in the swell wave environment. However, the heave motion standard deviation in the swell condition is 

five times larger when compare to that in 100-year hurricane condition. (Koo (2003)) 
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Fig. 22. Wave spectrum and time series for Swell – A. 
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Fig. 23. Wave spectrum and time series for Swell – B. 
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Fig. 24. Surge response time series and spectrum (Hs = 2.5 m, Tp =23 sec, γ =6.0). 
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Fig. 25. Pitch response time series and spectrum (Hs = 2.5 m, Tp =23 sec, γ =6.0). 
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Fig. 26. Heave response time series and spectrum (Hs = 2.5 m, Tp =23 sec, γ =6.0). 
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Fig. 27. Surge response time series and spectrum (Hs = 1.7 m, Tp =25 sec, γ =6.0). 
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Fig. 28. Pitch response time series and spectrum (Hs = 1.7 m, Tp =25 sec, γ =6.0). 
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Fig. 29. Heave response time series and spectrum (Hs = 1.7 m, Tp =25 sec, γ =6.0). 

 

 

 

 

 



Table 14. Summary of swell condition A statistics.  

SWELL CONDITION A 

 SURGE (m) HEAVE (m) RELATIVE 
HEAVE (m) PITCH (deg) 

MEAN  -1.08E-03 -2.62E-03 -6.51E-03 -5.35E-02

STD 2.99E-01 6.31E-01 9.86E-01 1.98E-01

EXE -1.06E+00 -1.68E+00 -3.36E+00 -6.80E-01

LF STD 6.65E-02 5.32E-02 - 4.03E-02

WF STD 2.87E-01 5.92E-01 - 1.90E-01

Notes:STD = standard deviation; EXE = extreme; LF = low frequency; WF = wave frequency 

 

Table 15. Summary of swell condition B statistics. 

SWELL CONDITION B 

 SURGE (m) HEAVE (m) RELATIVE 
HEAVE (m) PITCH (deg) 

MEAN 1.00E-02 -3.37E-03 -5.10E-03 -5.32E-02

STD 2.31E-01 7.55E-01 9.36E-01 1.49E-01

EXE 7.86E-01 -1.84E+00 -2.71E+00 -5.61E-01

LF STD 5.60E-02 5.94E-02 - 4.55E-02

WF STD 2.17E-01 7.09E-01 - 1.38E-01

Notes:STD = standard deviation; EXE = extreme; LF = low frequency; WF = wave frequency

 

Summary and Conclusions 

Due to heave and pitch coupling of the spar platform in a nonlinear manner, the pitch restoring coefficient is a 

function of heave motion, and this can be expressed by the Mathieu instability equation. When the spar exhibits the 

Mathieu instability, the spar experiences lock-in phenomena in pitch motion. Depending on the amount of available 

damping, Mathieu instability may or may not occur. A damped Mathieu stability diagram is also developed in this 

study. The results of case studies can be summarized as follows: 



First, a classical spar is modeled in a regular wave environment without considering the effects of the mooring lines 

and risers. The drag coefficient of the spar hull is changed to determine the effect of pitch damping on Mathieu 

instability. The simulation results clearly show the Mathieu instability mechanism as well as the pitch damping 

effects on the Mathieu instability. The Mathieu stability diagram also shows that increasing pitch damping 

suppresses the Mathieu instability problem.  

Second, the same spar is modeled in regular waves, and the mooring lines and risers are considered. The results 

show that mooring line and riser buoyancy-can effects play an important role in the Mathieu instability analysis of a 

spar platform through increasing damping/shifting pitch natural period. Thus, the possibility of Mathieu instability is 

expected to be overestimated without proper modeling of riser buoyancy-cans and mooring lines in the computer 

simulations and in the model basin experiments. 

Third, the wave elevation effect on the Mathieu instability is investigated. The simulation results show that wave 

elevation effect can be very important with large wave elevation and large phase difference between wave and heave 

motion. Thus, Mathieu instability analysis may be incorrect without considering wave elevation effect. 

Fourth, the simulations are conducted for West Africa and North Sea swell environment conditions. The Swell-A and 

Swell-B simulation results show that for both cases the maximum heave motion is 1.7 ~ 1.9 meters (5.5 ~ 6.2 ft) and 

the maximum pitch motion is around 0.6 ~ 0.7 degrees. Based on the regular wave simulation results, the spar 

platform is very stable in this range of heave and pitch response. It shows that the spar platform does not experience 

Mathieu instability in the typical swell environment condition. However, the heave motion standard deviation in the 

swell condition is five times larger than that for the 100-year hurricane condition in the Gulf of Mexico. Due to 

small wave elevation in the swell environment, the wave elevation does not give significant effects on the Mathieu 

instability of the spar platform. 
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