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PART (a) - INTRODUCTION TO TURBULENCE 
 
7.1 What is Turbulence? 
 
• A “ random”, 3-d, time-dependent eddying motion with many scales, superposed on an 

often drastically simpler mean flow. 
 

Instantaneous Mean 

 
  

 
 

 
 

 
• A solution of the Navier-Stokes equations. 
 
• The natural state at high Reynolds numbers (i.e. most civil-engineering flows). 
 
• An efficient mixer ... of mass, momentum, energy, constituents. 
 
• A major source of energy loss. 
 
• “The last great unsolved problem of fluid mechanics” . 



 
CFD 7-2 David Apsley 

Laminar, Turbulent, Transitional 
 
Laminar flow is smooth, with adjacent layers of fluid sliding past each other without 
intermingling. Cross-stream transfer of momentum occurs because viscous forces act 
between adjacent layers moving at different speeds. 
 
Turbulent flow is “chaotic” , with adjacent layers continually distorting and intermingling. A 
net transport of momentum occurs because of the mixing of fluid elements from different 
layers with different mean velocity. 
 
Transition from laminar to turbulent flow occurs at sufficiently high Reynolds number: 

Re
ULUL =≡  

through a process of local bursts of turbulence coalescing to fill the flow. The value at which 
transition occurs is called the critical Reynolds number, Recrit. It is only approximate, and 
depends on the smoothness of the surface and the level of disturbances in the flow. 
 
The seminal experiments identifying the role of the Reynolds number in determining the 
nature of pipe flow were performed by Osborne Reynolds in 1883, in what is now the 
University of Manchester. The accepted critical Reynolds number for transition in round 
pipes, based on bulk velocity and pipe diameter, is Recrit ≈ 2300. 
 
 
7.2 Turbulence Notation 
 
The instantaneous value of any flow variable can be decomposed into mean + fluctuation. 
 

 
 
Mean and fluctuating part are denoted by either an overbar ( ¯ ) and a prime ( ′ ): 
  uuu ′+=  
or by upper case and lower case: 

uU +  
The first is more commonly used for deriving results but becomes cumbersome in general 
use. The particular notation being used is, hopefully, obvious from the context. 
 
By definition, the average fluctuation is zero: 

0=′u  
 
The process of taking the mean of a turbulent quantity or product of turbulent quantities is 

v

u  
 

↓                           

           
                       mean               +    fluctuation 
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called Reynolds averaging and it follows the normal averaging rules for products: 

 222 φ′+φ=φ  (variance) 

 ′φ′+φ=φ  (covariance) 
 
 
7.3 Effect of Turbulence on the Mean Flow 
 
As a final result engineers usually require only mean quantities. However, in establishing the 
mean flow, turbulent fluctuations must be taken into account because, although the average 

value of an individual fluctuation (e.g. u′  or v′ ) is zero, the average value of a product (e.g. 

vu ′′ ) is usually non-zero and may lead to a significant net flux.  
 
Consider the balance of processes for an arbitrary control volume. For simplicity, assume 
constant density. 
 
 
7.3.1 Mass 
 
Instantaneous flow: 0=�

faces
n Au   

Average:  0=� Aun    (1) 

 
The only change is that the instantaneous velocity u is replaced by the mean velocityu. 
 
 
The mean velocity satisfies the same mass equation as the instantaneous velocity. 
 
 
 
7.3.2 Momentum 
 
Instantaneous flow: 

 forcesuAuVu
t faces

n =+ � )()(
d

d
 

Average, noting that there is a product of velocities in the momentum flux:  

�
forcesuuuuAuV

t
termextra

nn =′′++� )()(
d

d
 

or, rearranging, 

 �� ′′−+=+ AuuforcesuAuuV
t nn )()()(

d

d
 (2) 

 
The mean momentum equation has exactly the same form as that for the instantaneous 
momentum, except for extra flux terms that have the same effect as an additional stress (force 
per unit area). These terms, 

 ,, vuuu ′′−′′−    etc., (3) 
are called the Reynolds stresses. These terms arise from the averaging of a product of 

V
A

u

un
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turbulent quantities; they are a consequence of the non-linearity of the fluid-flow equations. 
 
 
The mean velocity satisfies the same momentum equation as the instantaneous velocity,  
except for the addition of apparent stresses – the Reynolds stresses. 
 
 
Thus, a net transfer of momentum may be effected by fluctuating velocities. For example, in 
a simple shear flow, the net vertical transport of momentum per unit area is the shear stress 

 
�

���

stress
turbulent

stress
viscous

vu
y

u ′′−
∂
∂=  (4) 

 
Turbulent transport of momentum can be illustrated by considering 
the motion of particles whose fluctuating velocities allow them to 
cross a surface drawn in the flow.  
 
If particle A migrates upward (v′ > 0) then it tends to retain its 
original momentum, which is now lower than its surrounds (u′ < 0). 
 
If particle B migrates downward (v′ < 0) it tends to retain its original 
momentum which is now higher than its surrounds (u′ > 0). 

 
In both cases, vu ′′−  is positive and, on average, tends to reduce the momentum in the upper 
fluid or increase the momentum in the lower fluid. Hence there is a net transfer of momentum 
from upper to lower fluid, equivalent to an additional mean stress. 
 
 
Velocity Fluctuations 
 

Normal stresses: 222 ,, wvu ′′′  

Shear stresses: vuuwwv ′′′′′′ ,,  

Turbulent kinetic energy:  )( 222
2
1 wvuk ′+′+′=  

(Common usage refers to both vu ′′−  and vu ′′  as “ turbulent stresses” .) 
 

Most turbulent flows are anisotropic; i.e. 222 ,, wvu ′′′  are different. 
 
 
7.3.3 General Scalar 
 
In general, the advection of any scalar quantity φ gives rise to an additional scalar flux in the 
mean-flow equations; e.g. 

 
���

fluxadditional

uuu φ′′+φ=φ  (5) 

Again, the extra term is the result of averaging a product of two fluctuating quantities. 

y

U
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7.3.4 Turbulence Modelling 
 
At high Reynolds numbers, turbulent fluctuations transport a far greater amount of 
momentum than viscous forces throughout most of the flow. Thus, the modelling of the 
Reynolds stresses is a vital part of flow prediction. 
 
A turbulence model or turbulence closure is a means of deriving the Reynolds stresses (and 
other turbulent fluxes) in order to close the mean-flow equations. Part (b) will describe some 
of the commoner turbulence models used in engineering. 
 
 
7.4 Turbulence Transport 
 
7.4.1 Processes 
 
Production and Dissipation 
Turbulence is initially generated by 
instabilities in the flow caused by mean 
velocity gradients (e.g. ∂U/∂y). These eddies 
in their turn breed new instabilities and hence 
smaller eddies. The process continues until 
the eddies become sufficiently small (and 
fluctuating velocity gradients ∂u/∂y 
sufficiently large) that viscous effects 
become important and dissipate turbulence 
energy as heat. This process – the continual 
creation of turbulence energy at large scales, 
transfer of energy to smaller and smaller 
eddies and the ultimate dissipation of 
turbulence energy by viscosity – is called the turbulent energy cascade. 
 
Transport 
It is common experience that turbulence can be transported (i.e. carried) with the flow. 
(Think of the turbulent wake behind a vehicle or downwind of a large building). 
 
 
7.4.2 Turbulent Transport Equations 
 
It can be proved mathematically (ask me if you are really desperate to know how!) that: 
 

(1) Just like the mean momentum components, each Reynolds stress jiuu  satisfies its 

own scalar transport equation. 
 

(2) Each individual Reynolds stress jiuu has: 

•  a production term Pij determined by mean velocity gradients; 
• a dissipation term ij formed from viscosity acting on fluctuating velocity 

gradients; 
• a redistribution term ij transferring energy between stresses via pressure 

fluctuations. 

large eddies, scale L

small eddies, scale l

(low frequency)

(high frequency)

ENERGY
CASCADE

PRODUCTION

by mean flow

DISSIPATION

by viscosity  
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These make up the “source”  term of the Reynolds-stress transport equation: 

ndissipatiotionredistribuproductionsourcenet −+=  
  

There are also “advection”  terms (turbulence carried with the flow) and “diffusion”  
terms (when turbulence intensities vary from point to point). 

 
(3) The production terms for different Reynolds stresses involve different mean velocity 

gradients; for example, the rate of production per unit mass of 2
11 uuu =  and 

uvuu =21  are, respectively, 
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∂
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 (6) 

(Exercise: see if you can spot patterns and write down the production terms for the 
other stresses). 

 
(4) Because: 
 (i) mean velocity gradients are bigger in some directions than others, 

(ii) motions in certain directions are selectively damped (e.g. by buoyancy forces 
or rigid boundaries), 

turbulence is usually anisotropic, i.e. 222 ,, wvu are all different. 
 
 
7.5 Particular Shear Flows  
 
7.5.1 Simple Shear Flows 
 
A flow for which there is only one non-zero mean velocity gradient, ∂U/∂y, is called a simple 
shear flow. Because they form a good approximation to many real flows, have been 
extensively researched in the laboratory and are amenable to basic theory, they are an 
important starting point for many turbulence models. 
 
For such a flow, the first of (6) and similar expressions show that P11 > 0 but that 

P22 = P33 = 0, and hence 2u  tends to be the largest of the normal stresses because it is the 
only one with a non-zero production term. On the other hand, the rigid boundary on y = 0 

selectively damps wall-normal fluctuations; hence 2v  is the smallest of the normal stresses. 
 
If there are density gradients (for example in atmospheric flows) then buoyancy forces will 
either damp (stable density gradient) or enhance (unstable density gradient) vertical 
fluctuations. This represents an interchange of potential energy and kinetic energy. 
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7.5.2 Free Flows 
 
 
 
Mixing layer 
 
 
 
 
 
 
 
 
Wake 
(plane or axisymmetric) 
 
 
 
 
 
 

 
 
 
Jet 
(plane or axisymmetric) 
 
 
 
 
 
 
Note that, for these simple flows: 
 
• Maximum turbulence occurs where yU ∂∂ /  is largest, because this is where turbulence 

production occurs. Note, however, that in the case of wake or jet, some turbulence 
must have been diffused into the central core where 0/ =∂∂ yU . 

 

• uv  has the opposite sign to ∂U/∂y and vanishes when this derivative vanishes. 
 

• These turbulent flows are anisotropic: 22 vu > . This is because, for these simple shear 
flows, turbulence production preferentially favours the streamwise component: 

0,2 2211 =
∂
∂−= P

y
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7.5.3 Wall-Bounded Flows 
 
 
 
Pipe flow 
 
 
 
 
 
 
 
 
Flat-plate boundary layer 
 
 
 
 
 
 
 
 
The presence of a solid boundary leads to flow behaviour and turbulence structure very 
different from free turbulent flows. 
 
Even though the bulk Reynolds number /Re LU ∞=  is large and hence viscous effects in the 
majority of the flow are small, there must be a thin layer close to the wall where the local 
Reynolds number based on distance from the wall, /Re yuy = , is small and molecular 

viscosity is important. 
 
 
Wall Scales 
 
An important parameter is the wall shear stress w (drag per unit area). Like any other stress 
this has dimensions of [density] × [velocity]2 and hence it is possible to define a velocity 
scale called the friction velocity uτ (also written u*): 
 

 /� wu =  (7) 

 
 
From u�  and  it is possible to form a viscous length scale l �  = /u� , and hence a non-
dimensional distance from the wall: 
 

 
�yu

y =+  (8) 

 
 
The direct effects of viscosity are only important when y+ is O(1). 

UD

 

y

U

y

u ui j

u2

-uv v2

constant-stress layer
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The total mean shear stress is made up of viscous and turbulent parts: 

���
��� turbulent

viscous

uv
y

U −
∂
∂=  

 
When there is no streamwise pressure gradient  is approximately constant over a significant 
depth and is equal to the wall stress w. This assumption of constant shear stress allows us to 
establish the velocity profile in regions where either viscous or turbulent stresses dominate. 
 
 
Near-Wall Region (Viscous Sublayer) 
Very close to a smooth wall turbulence is damped out by the presence of the boundary. In this 
region the shear stress is predominantly viscous: 

 constant
y

U
w ,=

∂
∂=  

� 
y

U w=  (9) 

i.e. The mean velocity profile in the viscous sublayer is linear. This is generally a good 
approximation in the range y+ < 5. 
 
 
Log-Law Region 
At large Reynolds numbers, the turbulent part of the shear stress dominates throughout most 
of the boundary layer so that, (on largely dimensional grounds, since u�  and y are the only 
possible velocity and length scales), 

 
y

u

y

U �∝
∂
∂

 

� )ln
1

(
�

� B
yu

uU +=  (10) 

i.e. The turbulent boundary-layer profile is logarithmic. 
 
 (von Kármán’s constant) and B are universal constants with experimentally-determined 

values of about 0.41 and 5 respectively. 
 
Experimental measurements indicate that the log law actually holds to a good approximation 
over a substantial proportion of the boundary layer. (This is where the logarithm originates 
from in common friction-factor formulae such as the Colebrooke-White formula for pipe 
flow). 
 
(9) and (10) are often written in non-dimensional form: 
 

 
)(ln

1
)(turbulent

(laminar)

ByU

yU

+=

=
++

++

 (11) 

where  

 ,
�

�
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y

u

U
U == ++  (12) 
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Summary of Part (a) 
 
• Turbulence is a 3-d, time-dependent, eddying motion with many scales, causing 

continuous mixing of fluid. 
 
• Prediction of turbulent flow starts by decomposing each flow variable into a mean (or 

average) plus a fluctuation. The process of averaging turbulent variables or their 
products is called Reynolds averaging. 

 
• Turbulent fluctuations make a net contribution to the transport of momentum and 

other quantities. Turbulence enters the mean momentum equations via the Reynolds 
stresses, e.g. 

vuturb ′′−=  

 
• A means of specifying the Reynolds stresses (and hence solving the mean flow 

equations) is called a turbulence model or turbulence closure. 
 
• Turbulence energy is generated at large scales by mean-velocity gradients (and, 

sometimes, body forces such as buoyancy). Turbulence is dissipated (as heat) at small 
scales by viscous action. 

 
• Because of the directional nature of the generating process (i.e. mean-velocity 

gradients and/or body forces) turbulence is initially anisotropic. Energy is 
subsequently redistributed amongst the different stress components, primarily by the 
action of pressure fluctuations. 

 
• Turbulence modelling is, to a large extent, guided by experimental observations and 

theoretical considerations for simple free flows (mixing layer, jet, wake, grid-
generated turbulence) and wall-bounded flows (pipe flow, flat-plate boundary layer). 
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PART (b): TURBULENCE MODELLING1 
 
7.6 Objectives in Turbulence Modelling 
 
The Reynolds-averaged Navier-Stokes (RANS) equations are transport equations for the 
mean velocity (U, V, W) and scalars . 
 
The product of turbulent fluctuations contributes to the net transport of momentum via the  

Reynolds stresses uv− , 2u− , ... 
and, if there are additional scalars, through the 

turbulent fluxes φ− v  etc. 
 
A turbulence model is a means of specifying the Reynolds stresses and turbulent fluxes, 
hence closing the mean-flow equations. 
 
For engineers seeking to predict flow rates, pressure 
distributions and drag coefficients, the primary requirement 
of a turbulence model is a good prediction of any 
dynamically-significant Reynolds stress. Often this is just the 

shear stress uv− . If turbulent transport is negligible 
compared to other forces then a high-quality turbulence 
model is not required. On the other hand, there are certain 
flows where an accurate prediction of the shear stress is vital. A particular example is 
boundary-layer separation, because the overall drag is very sensitive to the occurrence and 
position of separation. High levels of momentum transport enable the main stream to “drag”  
the near-surface flow forward, countering the adverse pressure gradient and helping to 
maintain a forward flow, thus delaying separation. 
 
 
7.7 Eddy-Viscosity Models 
 
7.7.1 The Eddy-Viscosity Hypothesis 
 
In simple shear the mean shear stress is made up of both viscous and 
turbulent contributions: 

 
���

��� turbulent
viscous

uv
y

U −
∂
∂=  (13) 

 
The single most popular type of turbulence closure is called an eddy-viscosity model (EVM) 
which, by direct analogy with the viscous stress, assumes stress proportional to rate of strain: 

 
y

U
uv tturb ∂

∂=−≡  (14) 

µt is called an eddy viscosity or turbulent viscosity. 

                                                 
1 Better (but very mathematical) descriptions of turbulence models can be found in: 
Wilcox, D.C., 1998, “Turbulence Modelling for CFD” , 2nd ed,  DCW Industries. 
Pope, S.B., 2000, “Turbulent flows” , Cambridge University Press. 
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The total mean shear stress (13) is then 

 
y

U
eff ∂

∂=  (15) 

where the effective viscosity eff is the sum of molecular and turbulent viscosities: 
 teff +=  (16) 

 
Notes. 
(1)  is a physical property of the fluid and can be measured; 

t is a property of the flow and must be modelled. 
 
(2) t varies with position. 
 
(3) At high Reynolds-numbers, t �  throughout much of the flow. 
 
 
Eddy-viscosity models are widely used and popular because: 
• they are easy to implement in existing solvers (simply use a variable viscosity); 
• extra viscosity aids stability; 
• they have some theoretical foundation in simple shear flows. 
 
However, one should exercise caution because: 
• the eddy-viscosity hypothesis (14) is merely a model; it has little theoretical 

foundation in complex flows; 
• modelling turbulent transport is reduced to a single scalar t and hence at most one 

Reynolds stress can be represented accurately. 
 
 
The stress-strain relationship (14) applies only to simple shear flows. To be correct in any 
reference frame the mathematical representation must be tensorial and given by, for example, 

k
x

U
u

x

V

y

U
uv

t

t

3

2
2
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2 −
∂
∂=−

∂
∂+

∂
∂=−

 

where k is the turbulent kinetic energy. You should be able to work out expressions for all the 
other Reynolds stresses by comparison with these. 
 
 
7.7.2 Reynolds Analogy 
 
The Reynolds analogy assumes a similar gradient diffusion model for the turbulent flux of 
any scalar (e.g., temperature, salt, pollutant): 

 
y

v t ∂
∂=φ−  (17) 

where the turbulent diffusivity t is assumed proportional to the eddy viscosity: 

 
t

t
t =  (18) 

t is a turbulent Prandtl number; its value is usually 1. 
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7.7.3 Specifying the Eddy Viscosity 
 
With the eddy-viscosity hypothesis, closure of the mean-flow equations now rests solely on 
the specification of t, a property of the turbulence. 
 
As with molecular transport (  = / ) it is common to define a kinematic eddy viscosity 

 t
t =  (19) 

 
t has dimensions of [velocity] × [length], which suggests that it be modelled as 

 00lut =  (20) 

On physical grounds, u0 is a velocity scale reflecting the magnitude of turbulent fluctuations 
and l0 a length scale characteristic of the size of turbulent eddies. 
 

For wall-bounded flows a possible candidate for u0 is the friction velocity /� wu = . 

However, a more appropriate velocity scale in general is k , where k is the turbulent kinetic 
energy. 
 
For wall-bounded flows, l0 may be proportional to distance from the boundary. For free shear 
flows (e.g. jet, wake, mixing layer) l0 may be proportional to the width of the shear layer. 
However, both of these are geometry-dependent and lack generality. A common practice in 
general-purpose CFD is to relate l0 to local turbulence properties (see the k-  model below). 
 
Common practice nowadays is to solve transport equations for one or more turbulent 
quantities (usually, k + one other) from which t can then be derived on dimensional grounds. 
This leads to the following possible classification of eddy-viscosity models based on the 
number of transport equations to be solved. 
 
zero-equation models: 
 – constant-eddy-viscosity models; 
 – mixing-length models: l0 specified algebraically; u0 from mean flow gradients. 
one-equation models: 
 l0 specified algebraically; transport equation to derive u0; 
two-equation models: 
 transport equations to derive each of u0 and l0. 
 
Of these, the most popular in general-purpose CFD are two-equation models: in particular, 
the k-  model. 
 
 
Because they are the most representative types of eddy-viscosity model the mixing-length 
and k-  models will be described below. 
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7.7.4 Mixing-Length Models (Prandtl, 1925). 
 
Eddy viscosity: 

mt lu0=  

 
The mixing length, lm, is a characteristic size of turbulent eddy. If this is specified then the 
corresponding velocity scale may be deduced (in simple shear) from 

 
y

U
lu m ∂

∂=0  (21) 

 
The turbulent shear stress is then 

 
y

U

y

U
l

y

U
mt ∂

∂
∂
∂=

∂
∂= 2  (22) 

 
The model is based on the premise that if a turbulent eddy 
displaces a fluid particle by distance lm, its velocity will differ 
from its surrounds by an amount )/( yUlm ∂∂ . (Any constant of 

proportionality can be absorbed into the definition of lm). 
 
 
The specification of the mixing length lm depends on the type of flow. 
 
(1) Free shear flows 
 
lm is assumed constant and proportional to the shear-layer width δ. 
Rodi (1974) suggests: 
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jet) (round0.075
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ml  (23) 

 
 
(2) Wall-bounded flows 
 
lm is typically proportional to the distance from the boundary, y, up to a 
certain fraction of the boundary-layer height δ. Cebeci and Smith (1974) 
suggest: 
 )09.0,min( ylm =  (24) 

where  (  0.41) is von Kármán’s constant which was introduced earlier in 
connection with the logarithmic boundary-layer profile. 
 
 
Mixing-length models work well in near-equilibrium boundary layers, but are difficult to 
generalise to more complex flows. 
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7.7.5 The k-εεεε Model 
 
This is probably the most common turbulence model in use today. It is a two-equation eddy-
viscosity model with the following specification: 

 
2

�
k

Ct =  (25) 

C�  is a constant (with a typical value 0.09) k is the turbulent kinetic energy and  is the rate of 
dissipation of turbulent kinetic energy. 
 
k and  are determined by solving transport equations. For the record (don’ t learn them!) 
these are most conveniently given in differential form: 
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 (26) 

(There is an implied summation over the repeated index i – ask me about it if it worries you!). 
 
The diffusivities of k and  are based on the molecular and turbulent viscosities: 

�

)�()( , t

k

tk +=+=  

and, in the standard model (Launder and Spalding, 1974), model constants are: 
 C�  = 0.09,    C� 1 = 1.44,    C� 2 = 1.92,    k = 1,    ε = 1.3 (27) 
 
Note that the source term in the k equation is a balance between production P(k) and 
dissipation . The rate of production (per unit mass) P(k) is given in simple shear by 

 2)( )(
y

U
P t

k

∂
∂=  (28) 

but the general expression in arbitrary flows is more complex. Under the model assumptions, 
it is invariably positive and proportional to the square of the mean velocity gradient. 
 
A flow for which P(k) =  (production = dissipation) is said to be in local equilibrium. A 
constant-stress, equilibrium boundary layer with logarithmic velocity profile satisfies the 
high-Reynolds-number (  negligible) form of (26) provided that the constants satisfy 

 2
��1�2� )( =− CCC  (29) 

 
Notes. 
(1) The k-  model is not a single model but a class of slightly different schemes. Many 

variants include modifications for viscous effects (“ low-Reynolds-number k-  
models”). 

 
(2) Apart from the diffusion term, the k transport equation is that derived from the 

Navier-Stokes equation. The  equation is, however, heavily modelled. 
 
(3) Although k is a logical choice, use of  as a second scale is not universal and other 

combinations such as k-  (  is a frequency) may be encountered. 
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7.8 Advanced Turbulence Models 
 
Eddy-viscosity models are popular because: 
• they are simple to code; 
• extra viscosity aids stability; 
• they are supported theoretically in some simple but common types of flow; 
• they are very effective in many engineering flows. 
 
However, the dependence of a turbulence model on a single scalar t is clearly untenable 
when more than one stress component has an effect on the mean flow. The eddy-viscosity 
model fails to represent turbulence physics, particularly in respect of the different rates of 
production of the different Reynolds stresses and the anisotropy that results. 

 
A classic example occurs in simple fully-developed 
boundary-layer flow where, in the logarithmic region, 
the various normal stresses are typically in the ratio 

 6.0:4.0:0.1:: 222 =wvu                        (30) 
 
An eddy-viscosity model would, however, set all of 
these equal (to k3

2 ).  
 

 
 

 
 
 
 
 
 
More advanced types of turbulence model 
(some of which have a proud history at UMIST) 
are shown right and described below. 
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7.8.1 Reynolds-Stress Transport Models (RSTM) 
 
Also known as second-order closure or differential stress models. 

Main idea: solve individual transport equations for all stresses, 2u , uv  etc., rather than just 
the turbulent kinetic energy k. 
 
These equations are derived from the Navier-Stokes equations. They can be put in the usual 
canonical form:  

rate of change  + advection + diffusion = source 
but certain terms have to be modelled. The most important balance is in the “source”  term, 
which consists of parts that can be identified as: 
 – production of energy from the mean flow, Pij; 
 – dissipation of energy by viscosity, ij; 
 – redistribution of energy amongst different stress components, ij. 
 
The important point is that, at this level of modelling, both the advection term (turbulence 
carried by the mean flow) and the production term (creation of turbulence by the mean flow) 
are exact. Thus, everything contributing to the energy put into a particular Reynolds-stress 

component  is exact and doesn’ t need modelling. For example, the rate of production of 2u  
per unit mass is: 
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Assessment. 
For: 
• Advection and turbulence production terms are exact and not modelled; thus, RSTMs 

should take better account of turbulence physics than eddy-viscosity models. 
 
Against: 
• Models are very complex; 
• Many important terms (notably redistribution and dissipation) require modelling; 
• Models are computationally expensive (6 turbulent transport equations) and tend to be 

numerically unstable (only the small molecular viscosity contributes to any sort of 
gradient diffusion). 
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7.8.2 Non-Linear Eddy-Viscosity Models (NLEVM)2 
 
 These are a “half-way house” between eddy-viscosity models and Reynolds-stress transport 
models. 
 
Main idea: extend the simple proportionality between Reynolds-stress and mean-velocity 
gradients (i.e. rate of strain): 

stress ∝ rate of strain 
to a non-linear constitutive relation: 

stress = C1(rate of strain) + C2(rate of strain)2 + C3(rate of strain)3 + … 
(The actual relationship is tensorial and highly mathematical, so has been simplified to words 
here!) 
 
Models can be constructed so as to reproduce the anisotropy (30) in simple shear flow, as 
well as a qualitatively-correct response of turbulence in certain other types of flow, notably 
curved flows. UMIST experience is that a cubic stress-strain relationship is desirable. 
 
Assessment. 
For: 
• Produce qualitatively-correct turbulent behaviour in certain important flows; 
• Little more computationally expensive than linear eddy-viscosity models. 
 
Against: 
• Doesn’ t accurately represent production and advection processes; 
• Little theoretical foundation in complex flows. 
 
 
7.8.3 Large-Eddy Simulation (LES) 
 
Simulating a full, time-dependent turbulent flow at large Reynolds number is impractical as it 
would require huge numbers of control volumes, all smaller than the tiniest scales of motion. 
Large-eddy simulation solves the time-dependent Navier-Stokes equations for the 
instantaneous (mean + turbulent) velocity that it can resolve on a moderate size of grid and 
models the subgrid-scale motions that it cannot resolve. The model for the latter is usually 
very simple, typically a mixing-length model with lm proportional to the mesh size. 
 
 
7.8.4 Direct Numerical Simulation (DNS) 
 
This is not a turbulence model! It is a solution of the complete time-dependent Navier-Stokes 
equations without a turbulence model. 
 
This is prohibitively expensive at large Reynolds numbers as huge numbers of grid nodes 
would be needed to resolve all scales of motion. Nevertheless, supercomputers have extended 
the Reynolds-number range to a few thousand for simple flows and these results have assisted 
greatly in the understanding of turbulence physics and development of simpler models. 

                                                 
2 For details on non-linear eddy-viscosity modelling see, for example: 
Apsley, D.D., Chen, W.-L., Leschziner, M.A. and Lien, F.-S., 1997, Non-linear eddy-viscosity modelling of 
separated flows, Journal of Hydraulic Research, 35, 723-748. 
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7.9 Wall Boundary Conditions 
 
At walls the no-slip boundary condition applies, so that both mean and fluctuating velocities 
vanish. At high Reynolds numbers this presents three problems: 
• there are very large flow gradients; 
• wall-normal fluctuations are selectively damped; 
• viscous and turbulent stresses are of comparable magnitude. 
 
There are two main ways of handling this in turbulent flow. 
 
(1) Low-Reynolds-number turbulence models 
 Resolve the flow right down to the wall. This requires: 

– a very large number of nodes; 
– special viscosity-dependent modifications to the turbulence model. 

 
(2) Wall functions 

Don’ t resolve the near-wall flow completely, but assume theoretical profiles between 
the near-wall node and the surface. 

 
This doesn’ t require a large concentration of nodes, but the theoretical profiles used 
are really only justified in near-equilibrium boundary layers. 

 
 
7.9.1 Wall Functions 
 
The momentum balance for the near-wall cell requires 
the wall shear stress w ( 2

�u= ). Because the near-wall 

region isn’ t resolved, this requires some assumption 
about what goes on between near-wall node and the 
surface. 
 
If the near-wall node lies in the logarithmic region then 
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Subscript P denotes the near-wall node. Given UP and yP this is solved (iteratively) for uτ and 
hence the wall stress w. 
 
If a transport equation is being solved for k a better approach when the turbulence is clearly 
far from equilibrium (e.g. near separation or reattachment points) is to estimate an “effective”  

equilibrium friction velocity proportional to k  and estimate the wall shear stress from the 
tangential velocity UP and turbulent kinetic energy kP at the near-wall node: 
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(If the turbulence were genuinely in equilibrium, then u0 would equal u�  and (31) and (32) 
would be equivalent.) 
 
Amendments also have to be made to the turbulence equations, based on assumed profiles for 
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k and . In particular the production of turbulence energy is a cell-averaged quantity, 
determined by integrating across the cell. 
 
To use these equilibrium profiles effectively, it is desirable that the grid spacing be such that 
the near-wall node lies within the logarithmic layer, i.e. 

15030 << +
Py  

This means that with wall-function calculations the grid cannot be made arbitrarily fine close 
to solid boundaries. 
 
 
Summary of Part (b) 
 
• A turbulence model is a means of specifying the Reynolds stresses (and any other 

turbulent fluxes), so closing the mean flow equations. 
 
• The most popular closures are eddy-viscosity models, which assume that the 

Reynolds stress is proportional to the mean strain; e.g. in simple shear: 

y

U
uv tturb ∂

∂=−≡  

 
• The eddy viscosity µt may be specified geometrically (e.g. mixing-length models) or 

by solving additional transport equations. The most popular combination is the k-  
model (requiring transport equations for turbulent kinetic energy k and its dissipation 
rate ). 

 
• More advanced turbulence models include Reynolds-stress transport models, non-

linear eddy-viscosity models and large-eddy simulation. 
 
• Wall boundary conditions require special treatment because of large flow gradients 

and selective damping of wall-normal velocity fluctuations. The main options are 
low-Reynolds-number models (fine grids) or wall functions (coarse grids). 

 


