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For a conserved physical quantity and an arbitrary control volume,  
 rate of change within control volume   +   net outward flux   =   source within cell (1) 
 
The total flux through a surface consists of advection (movement with the flow) 
and diffusion (net transport by random molecular or turbulent fluctuations). If φ is 
the amount of the conserved quantity per unit mass of fluid, then the generic 
scalar-transport (or advection-diffusion) equation may be written: 
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The finite-volume method is a discretisation of (2). This Section focuses on steady flow. 
 
 
4.1 The Finite-Volume Method 
 
(1) A flow geometry is defined. 
 
 
(2) The flow domain is decomposed into a computational mesh or 

grid – a set of non-overlapping control volumes or cells – over 
which the integral equations are to be discretised. 

 
(3) The integral equations are discretised – i.e. approximated in 

terms of values at a set of nodes. 
 
 
(4) The discretised equations are solved numerically. 
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Computational meshes may be structured or unstructured, cartesian or non-cartesian. 
 
The commonest configurations are cell-centred or cell-vertex storage. (In Section 5 it will be 
seen that it is not necessary to store all variables at the same location). 

 
For simplicity, this course focuses on structured, 
cartesian meshes using cell-centred storage. In this 
arrangement the variable of interest, φ, is stored at nodes 
at the centres of control volumes. A typical 3-d control 
volume with its associated storage nodes is shown right. 
Relative to the cell centre (point P) the coordinate 
directions are commonly denoted west, east, south, north, 
bottom, top with: 
• lower case w, e, s, n, b, t being used for cell faces; 
• upper case W, E, S, N, B, T for adjacent nodes. 
 
For a cartesian mesh these would usually correspond to 
±x, ±y, ±z directions respectively. 
 
Cell-face areas will be denoted Aw, Ae, As, An, Ab, At. Volumes of cells will be denoted by V. 
 
In 2 dimensions one can think of a single layer of cells having unit depth ( z = 1). 
 
For a structured mesh one may use, interchangeably, ijk indices for the nodes. Then,  

φP ≡ φijk,      φE ≡ φi+1 jk ,    etc. 
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4.2 The One-Dimensional Advection-Diffusion Equation 
 
Consider first the steady-state, 1-d advection-diffusion equation. This is worthwhile because: 
• it greatly simplifies the analysis; 
• it permits a hand solution of the discretised equations; 
• subsequent generalisation to 2 and 3 dimensions is straightforward; 
• in practice, discretisation of fluxes (advection and diffusion) is generally carried out 

coordinatewise, i.e. along i, j and k lines separately; 
• many important theoretical problems are 1-d. 
 
 
 
Conservation for one control-volume gives 
 sourcefluxflux we =−  (3) 

where “ flux”  means the rate of transport through a cell face. 
 
If φ is the amount per unit mass, then the total flux is the sum of advective and diffusive 
fluxes, where: 
  advective flux = φuA   

  diffusive flux = A
xd

dφ−  

 
The advection-diffusion equation for φ is then: 
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(  = density, u = velocity, A = cross-sectional area, S = source per unit length). 
 
Dividing by x and taking the limit as x → 0 gives a corresponding differential equation: 
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Notes. 
• This system is quasi-1-d in the sense that the cross-sectional area A may vary. To 

solve a truly 1-d problem, simply set A = 1. The differential equation is then 
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• In this instance, , u,  and S are assumed to be known. In the general CFD problem, 

u is itself the subject of a transport equation, which must be solved simultaneously. 
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4.3 Classroom Examples 
 
Example 1. (Pure Diffusion) 
An insulated rod of length 1 m and 1 cm × 1 cm square cross-
section has its end temperatures fixed at 100 ºC and 500 ºC as 
shown. The heat flux across any section of area A is given by 

A
x

T
k

d

d−  

where the conductivity k = 1000 W m–1 K–1. 
 
 (a) Divide the rod into 5 control sections with nodes at the centre of each section and carry 
out a finite-volume analysis to find the temperature along the rod. 
 
(b) Write down a differential equation for the temperature distribution along the rod. 
 
(c) Solve the governing differential equation analytically and compare with (a). 
 
 
 
 
Example 2. (Diffusion + Sources) 
The rod configuration is now changed such that the right-
hand temperature is no longer fixed and the rod is allowed 
to cool along its length at a rate proportional to its 
difference from the ambient temperature (Newton’s law of 
cooling); i.e. the heat loss per unit length is: 

)( ∞−−= TTcS  
where the ambient temperature T �  = 20 ºC and the coefficient c = 2.5 W m–1 K–1. 
 
Repeat parts (a) – (c) of Example 1. 
 
 
 
 
Example 3. (Advection + Diffusion + Sources) 
A pipe of cross-section A = 0.01 m2 and length 
L = 1 m carries water (density  = 1000 kg m–3) 
at velocity u = 0.1 m s–1. 
 
A faulty valve introduces a reactive chemical 
into the pipe half-way along its length at a rate 
of 0.01 kg s–1. The diffusivity of the chemical in water is  = 0.1 kg m–1 s–1. The chemical is 
subsequently broken down at a rate proportional to its concentration φ (mass of chemical per 
unit mass of water), this rate amounting to – φ per metre, where  = 0.5 kg m–1 s–1. 
 
Assuming that the downstream boundary condition can be approximated by dφ/dx = 0, set up 
a finite-volume calculation with 7 cells to estimate the concentration along the pipe using 
(a) central and (b) upwind differencing schemes for advection. 
 

x= L

point
source

uφ=0 φ=0d
dx

0

 

0 1

T=100 C T=500 Co o

Rod

x=

0 1

T=100  Co

Rod
dT
dx =0

T =20 C
o

S=-c(T-T )oo

oo



 
CFD 4-5 David Apsley 

4.4 Discretising Diffusion  
 
Gradient diffusion is almost invariably discretised by 
central-differencing: 
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Notes. 
• In the finite-volume method, fluxes are required at cell faces, not nodes. 
 
• This approximation for (dφ/dx)e is second-order accurate in x (see later). 
 
• If the diffusivity  varies then its value on the cell face must be obtained by 

interpolation. 
 
• Equal weighting is applied to the two nodes on either side of the cell face. This is 

consistent with diffusion acting equally in all directions. Later on, we shall see that 
this contrasts strongly with advection, which has a definite directional bias. 

 
• A similar expression must be used for the west face. This is necessary 

for conservation: flux out of one cell equals flux into the adjacent 
cell. This conservative property is where finite-volume methods score 
most strongly over finite-difference and finite-element methods. 

 
It is common to define a diffusive transfer coefficient D. On the east face, for example, 
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4.5 Discretising the Source Term 
 
When the source is proportional to the amount of fluid, the total source strength for the cell is 
simply 
 (source per unit volume) × (volume) 
  VS ×=  
S is the average source density (usually taken as the value at cell centre); V is the cell volume. 
 
S often depends on the actual solution φ. For example, if φ is temperature, then Newton’s law 
of cooling says that the rate of heat loss is proportional to the temperature difference over the 
surrounds, or )( ∞φ−φ−= cS . The source term is conveniently decomposed into solution-
independent and solution-dependent parts as 
 0, ≤φ+= PPPP ssbsource  (9) 
The reason for this particular linearisation will become apparent later. 
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4.6 Assembling the Algebraic Equations 
 
When there is no flow (u = 0) the steady-state diffusion problem discretises as follows. 
 sourcefluxflux we =−  

� pPPWPwPEe sbDD φ+=φ−φ+φ−φ− )()(  

 
Multiples of φP, φE and φW can be collected together to give 
 PWwEePPWE bDDsDD =φ−φ−φ−+ )(  

or, in the notation that will be used hereafter: 

 � =φ−φ
nodes

adjacent
PFFPP baa  (10) 

 
For pure diffusion the matrix coefficients are given by: 
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(10) is a canonical form for the discretised scalar-transport equation. Each variable whose 
transport equation is to be solved will have a discretised equation of this form (with different 
values of the coefficients).  
 
(10) is the discretised equation for one control volume. If the φP values at the centre of all 
cells are assembled into a vector, then the set of algebraic equations takes the form 
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For a 1-d system this is tri-diagonal. If the coefficients are constants then it can be solved in 
one step by the tri-diagonal matrix algorithm (see the Appendix). If the coefficients are 
themselves dependent on the solution, then it must be solved iteratively. 
 
 
4.7 Extension to 2 and 3 Dimensions 
 
For a multi-dimensional flow the net flux out of a cell can be 
obtained by summing the outward fluxes through all faces.  
 
For quadrilateral elements (in 2d) or hexahedral elements (in 3d) 
then the net outward flux from of a cell is simply the sum of the 
net fluxes through opposing sides and the general conservation 
equation may be written: 
 sourcefluxfluxfluxfluxfluxflux btsnwe =−+−+− )()()(  (12) 
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The discretised equations are still assembled in the same matrix form 
 P

F
FFPP baa =φ−φ �  (13) 

with the summation simply being extended to include the other coordinate directions. 
 
Equation (13) describes the discretisation of the integral 
conservation equation for one control volume. Combining 
these for every control volume forms a matrix equation for 
the set of nodal values { φP} . For a 2-d flow this gives the 
banded matrix system shown. Additional outlying bands 
appear in 3 dimensions. 
 
Thus, (10) or (13) has the same form in 1-, 2- or 3-d problems, but in multiple dimensions the 
summation is extended to the other (S, N, B, T) nodes and there is a corresponding increase in 
the number of non-zero diagonals in the assembled matrix equation. This has a considerable 
impact on the solution of the matrix equation. 
 
Equation (13) formally describes the discretisation for a single control volume in an 
unstructured mesh. However, since the nodes do not have a simple ijk indexing pattern, the 
resulting matrix and the solution method are considerably more complex. 
 
 
4.8 Advection Schemes (Part I) 
 
Purely diffusive problems (u = 0) are of passing interest only. In typical engineering flow 
problems, the advection term far exceeds the diffusion term because the Reynolds number 
(Re  UL/  = ratio of inertial forces [mass × acceleration] to viscous forces) is very large. 
 
The steady-state advection-diffusion equation is 
 sourcefluxflux we =−  
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Writing 
 fluxmassuAC ee =ρ= )(  

and discretising the diffusion and source terms as before, the equation becomes 
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The problem is … how to specify the face values φe and φw in terms of the values at adjacent 
nodes. The method of specifying these face values is called an advection scheme or 
advection-differencing scheme. 
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4.8.1 Central Differencing 
 
At first sight the “obvious”  answer would be linear interpolation 
(central differencing): 
 )(2

1
EPe φ+φ=φ  

 
This is second-order accurate for φe in terms of the mesh size ∆x (see 
later). Substituting into (14) and rearranging gives a system of 
simultaneous equations – one for each control volume – of the form 
 � =φ−φ

F
PFFPP baa  

where the summation is over adjacent nodes and  
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(Note that Ce – Cw = 0 to satisfy mass conservation, so that the expression for aP can be 
simplified slightly.) 
 
The graphs below show the solution of an advection-diffusion problem with no sources for 
the two combinations 

Pe = 1/2 (advection � diffusion) 
Pe = 4  (advection � diffusion) 

 
where the Peclet number Pe is defined by 
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Pe = 1/2 

 
 

Pe = 4 

 

In the first instance the solution is very good (consistent with second-order accuracy). 
 
In the second case there are pronounced “wiggles”  in what should be a perfectly smooth 
solution. What is wrong? 
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Mathematically, when the cell Peclet number Pe is 
bigger than 2, one of the matrix coefficients becomes 
negative, meaning that, for example, an increase in the 
corresponding nodal value would lead to a decrease in 
the value at the central node. 
 
Physically, the advection process is directional; it 
transports properties only in the direction of the flow. 
By contrast, the central-differencing formula assigns 
equal weight to both upwind and downwind nodes. 
 
 
 
4.8.2 Upwind Differencing 
 
In upwind differencing φface is simply taken as the value at the 
upwind node; e.g. 
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This is only first-order accurate in x, but preserves the directional 
nature of advection. The alternatives are usually summarised as 
 Uface φ=φ  

where subscript U simply denotes the upwind node for that face. 
 
With this scheme, the algebraic equation for each control volume takes the canonical form 
 � =φ−φ

F
PFFPP baa  

where  
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(If the “max” bit confuses you, set Ce = Cw and consider separately the two cases where this 
is positive or negative.) 
 
When applied to the same advection-diffusion problem as the central-differencing scheme it 
is found that: 

• when 
2

1
Pe === xu

D

C
 the upwind-differencing scheme is not as accurate as 

central differencing; this is to be expected from its order of accuracy; 
• when Pe = 4 the upwind-differencing solution is not particularly accurate, but the 

“wiggles”  have disappeared. 
 
So there appears to be a pay-off – accuracy versus boundedness (absence of wiggles). The 
next sections examine the desirable properties of discretisation schemes, the constraints that 
they impose upon the matrix coefficients and more advanced advection schemes that are both 
accurate and bounded (wiggle-free). 
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4.9 Discretisation Properties 
 
(i) Consistent 
The discretised equations are equivalent to the continuum equations in the limit as the grid 
size tends to zero. 

e.g. 
x

PE φ−φ
 is a consistent approximation for 

x∂
φ∂

 (by the definition of a derivative). 

 
(ii) Conservative 
Achieved by consistent expressions for fluxes through the faces of 
adjacent control volumes; i.e. 
• what goes out of one cell must go into the adjacent cell; 
• fluxes are associated with faces, not nodes. 
This is built into the finite-volume method. 
 
 
(iii) Transportive 
Directional influence borne out in an advection scheme. In practice this means a higher 
weighting to node(s) on the upstream side of a face. 
 
 
(iv) Bounded 
In an advection-diffusion problem without sources the solution is bounded by the maximum 
and minimum values of the flow variable at surrounding nodes. 
 
 
(v) Stable 
This determines whether it is possible to obtain a solution – it says nothing about its 
accuracy. It means that small errors do not grow in the course of the solution procedure. 
 
 
(vi) Order 
Refers to how fast the truncation error diminishes as the grid size ∆ is reduced. If, on a 
uniform grid of spacing , the error in some numerical scheme is proportional to n as   0 
then that scheme is said to be of order n. 
 
Order can usually be established by the leading-order error term in a Taylor-series expansion 
(see below). Note that “error”  refers to the theoretical truncation error in this expansion and 
ignores any computational round-off error (computers can only store numbers to a finite 
number of significant figures). 
 
Higher accuracy can be obtained by using more nodes in an approximation – one node 
permits schemes of at most first-order accuracy, two permit at most second-order accuracy 
and so on. 
 
The more accurate a scheme then, in principle, the greater the reduction in numerical error as 
the grid is made finer or, conversely, the less nodes required to resolve the flow to a given 
accuracy. However, high-order schemes tend to require more computational calculations and 
often have boundedness problems. 
 

flux
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The order of differencing schemes for diffusion and advection can be 
established by Taylor-series expansions for the nodal values about 
the cell face. e.g. for the nodes either side of the east face: 
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Subtracting (18)(a) – (b) gives: 

 �+
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Hence, as the error term is O(∆x2), 
x

PE φ−φ
 is a second-order approximation for 

ex∂
φ∂

. 

 
Alternatively, adding (18)(a) – (b) gives: 
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Again, as the error terms are O( x2), the central differencing formula )(2
1

EP φ+φ  is a 

second-order approximation for φe. On the other hand, the Upwind-differencing 
approximations φP or φE (depending on the direction of the flow) are first-order accurate. 
 
 
It can be shown that truncation errors in the advection terms of: 
• odd order lead to numerical diffusion – smearing out of discontinuities – e.g. first-

order upwind differencing; 
• even order lead to dispersion – recognised by under- and overshoots or “wiggles” ; 

e.g. second-order central differencing. 
 
Schemes of low-order accuracy – e.g. Upwind – lead to substantial numerical diffusion in 2- 
and 3-d calculations when the velocity vector is not aligned with the grid lines. 
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4.10 Constraints on the Matrix Coefficients 
 
The steady-state advection-diffusion equation takes the form 
 sourcefluxoutwardnet =  
and leads to algebraic equations for each control volume of the form 
 P

F
FFPP baa =φ−φ �  

where the summation is over all adjacent nodes. There is one set of matrix coefficients aP, 
{ aF}  = { aW, aE, aS, aN, aB, aT} , bP for each internal node. The required properties of 
discretisation schemes place a number of constraints on the matrix coefficients. 
 
Without Sources 
For each control volume boundedness requires that, with no sources, the value at each node 
must lie between the minimum and maximum values at adjacent nodes. For linear schemes 
(i.e. those whose coefficients do not depend on the solution) this requires: 
 FaF allfor0≥            (“positive coefficients” ) 

 �≥
F

FP aa  

(Actually, boundedness alone requires that all coefficients are of the same sign, but in this 
context it invariably means positive). It is the contravening of the positivity condition on the 
matrix coefficients that leads the central-differencing scheme to produce “wiggles” . 
 
When there are no sources, the differential equation involves only derivatives of φ and hence 
the discretisation must admit the solution φ = constant. This requires that, in the absence of 
sources, the second of these constraints is actually stricter: 
 �=

F
FP aa  (“sum of neighbouring coefficients” ) 

 
With Sources 
When source terms are added they can be linearised as PPP sb φ+ . If the diagonal source term 

(sPφP) is switched to the LHS then the diagonal coefficient becomes 
 � −=

F
PFP saa  

Numerical stability requires negative feedback; i.e. 
 sP ≤ 0 (“negative-slope linearisation of the source term” ) 
If this condition and the positivity of the aF is maintained then 

 1≤�
P

F

a

a
          (“diagonal dominance” ) 

The last condition is, in fact, a necessary requirement of many solution algorithms. 
 
To sum up, the requirements of boundedness and stability place the following constraints on 
the matrix coefficients: 
 

positive coefficients: FaF allfor0≥  

negative-slope linearisation of the source term: 0, ≤φ+= PPPP ssbsource  

sum of neighbouring coefficients: � −=
F

PFP saa  
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4.11 Advection Schemes (Part II) 
 
With an understanding of the desirable properties of a differencing scheme it is now possible 
to examine more advanced advection schemes. 
 
 
4.11.1 Exponential Scheme 
 
The 1-d advection diffusion equation is 

 source
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or, equivalently, 
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If there are no sources (S = 0) then the total flux must be constant:  

 constant
x

AuAflux =φ−φ=
d

d
 

This can be solved exactly between values φP and φE at adjacent nodes to give 
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where the Peclet number is 
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. 
With a similar expression for the west face, one obtains 
 � φ−φ=− FFPPwe aafluxflux  

where 

 WEPEW aaa
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C
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1
,

1 PePe
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 (20) 

 
Assessment 
• Conservative by construction. 
• Transportive, because if Pe � 1 (advection � diffusion) then, for example, 
  Pe Cflux φ≈)(  

 depends primarily on the upstream node. 
• Bounded: all aF are positive and aP is the sum of the neighbouring coefficients. 
This scheme – by construction – gives the exact solution for zero sources and constant 
velocity and diffusivity, but this is something we could have found analytically anyway.  
 
The scheme has never really found favour because: 
• the scheme isn’ t exact when u or  vary, or if there are sources, or in 2-d or 3-d flow; 
• exponentials are extremely expensive to compute. 
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4.11.2 Hybrid Scheme (Spalding (1972) 
 
Based on a piecewise linear approximation to the exponential scheme. Amounts to: 
• central differencing if 2Pe ≤  

• upwind differencing (with zero diffusion) if 2Pe > . 

 
e.g. for u > 0: 
 � φ−φ=− FFPPwe aafluxflux  

where: 
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and, for each face (e or w),  

 Pe,,
xu

D

C

x

A
DuAC ==== . 

 
Assessment 
The scheme is conservative, transportive and bounded. 
 
The hybrid scheme remained extremely popular in commercial codes for a long time because 
it was stable and robust. However, most flows of interest operate in the high-advection/low-
diffusion regime, where this scheme amounts to first-order upwinding (with no diffusion). 
Modern CFD practitioners seek much higher accuracy. 
 
Patankar also developed a power-law approximation to the exponential scheme, to overcome 
the heavy-handed switch-off of diffusion at Pe = 2. However, “powers”  are as 
computationally expensive as exponentials. 
 
 
4.11.3 QUICK – QUadratic Interpolation for Convective Kinematics (Leonard, 
1979) 
 
Fits a quadratic polynomial through 3 nodes to get 3rd-order 
accuracy. 
 
For each cell face, QUICK uses the nodes either side of the 
cell face, plus a further upwind node depending on the 
direction of the flow; the situation for the east face is shown 
right. 

 
To emphasise the conservation 
property which associates fluxes 
with cell faces, not nodes, we 
shall, in future, for all such 
three-point schemes use the 

notation φD, φU and φUU for the Downwind, Upwind and 
Upwind-Upwind nodes at any particular face: 

φUU φU φD

face  

W P E

P E EE

e

φ
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φP φe φE

φP φe φE φEE

u>0

u<0
e
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By fitting a quadratic polynomial to these nodes the QUICK scheme gives: 
 DUUUface φ+φ+φ−=φ 8

3
4
3

8
1  (22) 

 
e.g. if u > 0, then: 
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Hence: 
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Assessment 
• 3rd-order accurate. 
• Conservative by construction. 
• Transportive, because upwind bias is built into selection of the third node. 
• Not bounded; (for example, if u > 0 then aE is negative). 
 
Despite boundedness not being guaranteed (which can be a severe problem in turbulent 
flows, where k and ε are required to be positive – see later) the high-order accuracy of the 
QUICK scheme make it popular and widely-used. 
 
 
4.11.4 Flux-Limited (Monotonic) Schemes 
 
Hitherto we have only seen schemes where the matrix coefficients aF are constants (i.e. 
independent of the solution φ). It can be proved that the only unconditionally-bounded 
scheme of this type is Upwind differencing – and this is merely first-order accurate. Schemes, 
such as QUICK, which rely on fitting a higher-order polynomial through several points, are 
prone to generate cell-face values which lie outside the interpolating values φD, φU, φUU. To 
prevent this, modern schemes employ solution-dependent limiters, which enforce 
boundedness whilst trying to retain high-order accuracy wherever possible. 
 
For three-point schemes, φ is said to be monotonic 
increasing or monotonic decreasing if DUUU φ<φ<φ  

or DUUU φ>φ>φ  respectively. A necessary condition 

for boundedness is that the schemes must default to 
first-order upwinding (i.e. φface = φU) if φ is not locally 
monotonic (either increasing or decreasing). 
 
Two such schemes used in in-house software are the 
following. In both cases, monotonic variation in φ 
may be gauged by whether the changes in φ between successive nodes (φUU and φU, φU and 

WW W P E
ew

 

φ
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φ

UU U D
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φD) have the same sign; i.e. 
 0))(( >φ−φφ−φ⇔ UUUUDmonotone  

Where monotone, the fraction of the total variation which occurs between UU and U nodes is 

 
UD

UUUr
φ−φ
φ−φ

=  

 
UMIST scheme (Upstream Monotonic Interpolation for Scalar Transport – Lien and 
Leschziner, 1993). This is a limited variant of QUICK which is third-order accurate where 
monotone: 

 
�
�
�

φ
++φ−φ+φ

=φ
otherwise
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Harmonic scheme (Van Leer, 1974) 
Second-order accurate where monotone. 
 

��

�
�

�

φ
φ−φ

φ−φφ−φ
+φ=φ

otherwise

monotoneif
)(

))((

U

UUD

UUUUD
U

face  

 
The choice of these two examples is (obviously!) parochial. Many other equally-good 
schemes exist. The important points about these schemes are that they are (a) bounded, but 
(b) non-linear (i.e. the resulting matrix coefficients depend on, and hence change with, the 
solution φ). The last property means that an iterative numerical solution is inevitable. 
 
 
4.12 Implementation of Higher-Order Advection Schemes 
 
The general steady-state scalar transport equation is 

 
sourcediffusionadvection

SVA
n

C
faces

=
∂
φ∂−φ� )(

 (23) 

 
If C and /AD =  are the outward mass flux and diffusion transport coefficient on each 
cell face, then, with the standard discretisation for diffusion and sources, (23) becomes 
 PPP

faces
FPface sbDC φ+=φ−φ+φ� )]([  

where F denotes an adjacent node and P is the index of the cell-centre node. Since 0=�C  

(by mass conservation), it is convenient to subtract PCφ�  from both sides: 

 PPP
faces

FPPface sbDC φ+=φ−φ+φ−φ� )]()([  (24) 

 
An advection scheme (Upwind, Central, QUICK, …) is needed to specify the cell-face value 
φface. Because many matrix-solution algorithms require positive coefficients, it is common 
practice to separate φface into the upwind value φU (because this is guaranteed to produce 
positive coefficients) and the departure from upwind differencing, φface  – φU; i.e.: 
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The first part gives rise to a positive matrix coefficient aF, whilst the latter part is transferred 
to the RHS (source side) of the equation as what is called a deferred correction: 
 

��� ���� ��
correctiondeferred

faces
UfacePPP

F
FPF Csba �� φ−φ−φ+=φ−φ )()(  

Then 

 PFFPP baa ˆ=φ−φ �  (25) 

where 
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The deferred correction has to be calculated from the current value of φ and is treated 
explicitly (i.e. held constant during an iteration). 
 
 
4.13 Curvilinear Meshes 
 
Non-cartesian coordinate systems are called curvilinear. 
The coordinates are denoted ( , , ) or ( i) and the direction 
of the coordinate lines varies with position in space. 
 
Coordinate systems in which coordinate lines cross at right angles are termed orthogonal. 
Examples other than cartesian include cylindrical and spherical polar coordinates. 
 
For a cartesian mesh the flux through the east face is given by: 

 )()( PEeeee DCA
x

uAflux φ−φ−φ=
∂
φ∂−φ=  (26) 

where 

 
tcoefficientransfer diffusion 

flux mass)(
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with similar expressions for the other faces. Orthogonal meshes can be treated in the same 
way: the direction normal to a cell face coincides with a coordinate line and fluxes can be 
discretised in a “coordinate-wise”  fashion. 
 
However, most curvilinear systems are non-orthogonal, with coordinate lines not crossing at 
right angles. The direction normal to one face is not necessarily along a coordinate line, and 
hence the diffusive flux, which depends on ∂φ/∂n, cannot be approximated solely in terms of 
the nodes either side of the face. For example, in 2 dimensions, if the east face (  = constant) 
of a control volume coincides with x = constant, the normal derivative is 
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The “diagonal derivative”  ∂φ/∂  can be discretised as 
/)PE φ−(φ , but the derivative parallel to the cell face, 

∂φ/∂ , depends on the values at nodes other E and P. 
 
In general, non-orthogonal meshes require: 
• the “off-diagonal”  components of the diffusive flux 

(that containing ∂φ/∂  in the above example) to be transferred to the source side of the 
equation and treated explicitly; 

• the storage of all metric components ∂ /∂x, ∂ /∂y, … (9 components in 3d). 
 
Thus, non-orthogonal meshes are inherently more computationally-intensive. However, their 
added geometric flexibility makes them desirable in general-purpose solvers, 
 
 
4.14 Boundary Conditions 
 
The most common types of boundary condition are: 
• φ specified (Dirichlet boundary conditions); 
  e.g. u = 0 at a wall, or temperature fixed at some surface; 
• ∂φ/∂n specified (Neumann boundary conditions). 
  e.g. ∂φ/∂n = 0 on a symmetry plane, or at an outflow boundary. 
 
In the finite-volume method, both types of 
boundary condition can be implemented by 
transferring the boundary flux to the source term. 
 
For a cell abutting a boundary: 
 sourcesfluxflux boundary

boundary
not

=+�   

   � 

boundaryPFF

boundary
not

PP fluxbaa −=φ−φ �  

 
Thus, there are two modifications: 
• the aF coefficient in the direction of the boundary is set to zero; 
• the boundary flux is subtracted from the source terms. 
 
If flux(φ) is specified on the boundary, then this is immediate. If φ itself is 
fixed on the boundary then: 

 )()( PBB
PB DAflux φ−φ−=�
	



�
�


 φ−φ
−=φ  

To subtract this flux from the source term requires a simple change of 
coefficients: 
 BPPBBPP DssDbb −→φ+→ ,  (28) 
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4.15 Solution of the Algebraic Equations 
 
The discretisation of a single scalar transport equation over a single control volume produces 
an algebraic equation of the form 
 PFFPP baa =φ−φ �  

where the summation is over adjacent nodes. Combining the equations for all control 
volumes produces a set of simultaneous equations, i.e. a matrix equation 
 bA =  
where φφφφ is the vector of nodal values, { φP} , and A is sparse (i.e. has only a few non-zero 
diagonals). Many algebraic methods have been used to tackle this problem; only a few are 
mentioned below. 
 
 
4.15.1 Matrix Solution Algorithms 
 
Gaussian Elimination 
This is a direct (i.e. not iterative) method. It consists of a sequence of row operations to 
obtain zeros below the diagonal (“upper-triangular”  matrix). 
 
Inefficient: tends to fill in the sparse matrix A. 
OK for small hand calculations, but not recommended for large systems of equations. 
 
 
Gauss-Seidel 

 
Iterative update scheme:  
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� φ+=φ FFP
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P ab
a

 

through successive control volumes; (the 
asterisk *  denotes a “ latest”  value). 
 
 

Gauss-Seidel is simple to code and is often used for 
unstructured grids. However, it tends to converge slowly and 
may require substantial under-relaxation (see below). 
 
 
Line-I terative Procedures (“ L ine Gauss-Seidel” ) 
Along any one coordinate line, the system is tri-
diagonal; e.g. in the i-direction: 

� φ−=φ−φ+φ−
EW

not
FFPEEPPWW abaaa

,

*  

and hence a whole line can be updated at one go by 
the tri-diagonal matrix algorithm. This means that 
information can propagate right across the domain in one iteration, rather than (as in Gauss-
Seidel) one node at a time. A typical single iteration would consist of applying the update for 
each successive i line, then for each successive j line, then for each successive k line (in 3d). 
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This is probably the most popular method for block-structured grids, and is the basis of most 
of our in-house research codes. 
 
 
4.15.2 Convergence Criteria 
 
In all iterative methods the iteration is stopped when the residual error becomes less than 
some small, pre-defined tolerance. “Residual error”  is a sum over the errors of all control 
volumes; e.g. 
 sum of absolute residuals:         �=

cells

resError    

 root-mean-square (rms) error:   �=
cells

res
N

Error 2)(
1

 

where the residual is the error in satisfying the algebraic equations for any one cell: 
 � −φ−φ=

F
PFFPP baares  

 
 
4.15.3 Under-Relaxation 
 
If the algebraic methods described above are applied to the non-linear, coupled set of fluid-
dynamical variables (φ = u, v, w, …) then the change in variables at each iteration may be 
large enough to cause numerical instability. To overcome this, under-relaxation reduces the 
change at each iteration (without affecting the final, converged, solution). 
 
For the equation set 
 PFFPP baa =φ−φ �  

the iterative update can be written 

 old
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If, instead, only a fraction φP of the update is applied then 
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which can be rearranged as 
 old

PPPFFPP abaa φ−+=φ−φ � )1(  

 
Hence, under-relaxation can be achieved by a simple change of coefficients: 
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Note that this also makes the matrix equations more diagonally dominant (i.e.
P

F

a

a�  

smaller). 
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4.16 Summary 
 
• The integral conservation law for a scalar φ takes the form 
  sourcefluxoutwardnetchangeofrate =+  
 
• “ flux”   rate of transport through a surface and consists of: 
  advection – movement with the flow (sometimes called convection); 
  diffusion – net movement by random molecular or turbulent fluctuations. 
 
• Discretisation of the scalar-transport equation yields an algebraic equation of form 
  P

F
FFPP baa =φ−φ �  

 for each control volume, where the summation is over adjacent nodes. 
 
• The collection of these simultaneous equations yields a matrix equation with limited 

bandwidth (i.e. few non-zero diagonals), typically solved by iterative methods such as 
Gauss-Seidel or line-Gauss-Seidel. 

 
• Source terms are linearised as  
  0, ≤φ+ PPPP ssb . 
 
• Diffusive fluxes are usually discretised by central differencing; e.g. 

)( PFx

A
A

x
φ−φ−→

∂
φ∂−  

 
• Advection schemes are means of approximating φ on cell faces in order to compute 

advective fluxes. They include Upwind, Central, Exponential, Hybrid, QUICK, and 
flux-limited schemes. 

 
• General principles desired in a discretisation scheme: 
  consistency 
  conservativeness 
  boundedness 
  stability 
  transportiveness 
  accuracy 
 
• The above conditions impose certain constraints on the matrix equations: 
  0≥Fa  for all F 

  0≤Ps  

  P
F

FP saa −=�  

 
• To ensure positive coefficients (and implement non-linear schemes), advective fluxes 

are often decomposed into 
  “Upwind”  + “deferred correction”  
 with the latter being transferred to the source term and treated explicitly. 
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• For general curvilinear meshes it is necessary to store the metrics (∂ i/∂xj) of the 
coordinate transform and transfer part of the diffusive flux to the source term. 

 
• Boundary conditions can be implemented by transferring boundary fluxes to the 

source terms. 
 
• Under-relaxation is usually required to solve coupled and/or non-linear equations. 
 
 
 
 
(****  MSc course only * *** ) 
 
Appendix: Tri-Diagonal Matrix Algorithm 
 
For the system of equations: 
 1,,1,11 −==φ−φ+φ− +− Niscba iiiiii �                0φ  and Nφ  given 

 
Forward pass: 
 000 ,0 φ== QP  
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Backward pass: 
 1,,1,1 �−=+φ=φ + NiQP iiii  

 
 
Guaranteed to converge if ai > 0, ci > 0, ai + ci  bi for all i. 
 
 


