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3.0 Overview 
 
Fluid dynamics is governed by conservation equations for mass, momentum and energy. The 
most important of these is the Navier-Stokes equation, which is based upon: 
• continuum mechanics; 
• the momentum principle; 

• a linear stress-strain relationship (
y

U

∂
∂∝ ). 

(A fluid for which the last is true is called a Newtonian fluid; this is the case for almost all 
fluids in civil engineering. However, there are some important non-Newtonian fluids – for 
example, blood, paint and polymer solutions. Specialised CFD techniques exist for these.) 
 
The full equations are time-dependent, 3-dimensional, viscous, compressible, non-linear and 
highly coupled. However, in most cases it is possible to simplify the analysis by adopting 
some reduced equation set. Some common approximations are as follows.  
 
Reduction of dimension: 
• steady-state; 
• 2-d (or axisymmetric). 
 
Neglect of some physical feature: 
• incompressible; 
• inviscid. 
 
Simplified forces: 
• hydrostatic; 
• Boussinesq approximation. 
 
Approximations based upon averaging: 
• Reynolds-averaging (turbulent flows); 
• depth-averaging (shallow-water equations). 
 
Sometimes it may be simpler to solve for derived rather than primitive variables (ones which 
can be measured such as , u, p, …); for example: 
• potential flow. 
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3.1 Time-Dependent vs Steady-State 
 
Flows are often assumed steady if the boundary conditions are steady. However, many 
systems are naturally time-dependent; e.g. 
 waves; 
 tides; 
 pumps; 
and many flows with stationary boundaries become time-dependent through instability; e.g. 
 vortex shedding. 
 
Some solution procedures rely on a time-stepping method to march to steady state; an 
important example is transonic flow, because the mathematical nature of the governing 
equations is different for Ma < 1 and Ma > 1. 
 
Consequences. Time-dependent equations are “parabolic” ; (1st-order in time; solved by time 
marching). Steady-state equations are “elliptic” ; (solved by implicit, iterative methods). 
 
 
3.2 Two- Dimensionality 
 
Geometry and boundary conditions may dictate that the flow is two-dimensional. Two-
dimensional calculations require considerably less computer resources. 
 
“Two-dimensional”  may be extended to include “axisymmetric” . This is actually easier to 
achieve in the laboratory than true two-dimensionality. 
 
 
3.3 Incompressibility 
 
A flow (not a “ fluid” , note) is said to be incompressible if flow-induced pressure and 
temperature changes do not cause significant density changes. For an incompressible flow, 
density is constant along a streamline (D /Dt = 0). Note that incompressibility does not 
imply uniform density. Important flows driven by density differences can arise from 
variations in salinity (oceans) or temperature (atmosphere). 
 
All fluids are compressible to some degree. However, density changes due to flow may be 
neglected if: 
• the Mach number, Ma  u/c � 1; (a common rule of thumb is Ma < 0.3); 
• absolute temperature changes are small . 
These are usually the case in civil engineering; (an important exception is water hammer). 
 
Consequences. 
Compressible flow:  
• transport equations for density and internal energy (or enthalpy); 
• pressure derived from a thermodynamic relation (e.g. the ideal gas law); 
• solution by “density-based” methods. 
Incompressible flow: 
• internal energy is irrelevant: no thermodynamics; 
• mass conservation leads to an equation for pressure; 
• solution by “pressure-based” methods. 
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3.4 Inviscid Approximation 
 
If viscosity is neglected, the Navier-Stokes equations become the Euler equations.  
 
Important consequence. Dropping the viscous term reduces the order of the highest space 
derivative from 2 to 1. Consider, e.g, streamwise momentum in a developing boundary layer: 
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If we drop the viscous term there is no second-order derivative and therefore 
one less boundary condition. 
 
Very important consequence. 
Viscous flows (real fluids) require a non-slip condition (zero velocity) at rigid 
walls – the dynamic boundary condition. 
 
Inviscid (ideal) flows require only the velocity component normal to the wall 
to be zero – the kinematic boundary condition. The wall shear stress is zero. 

 
 
Although its influence in much of the flow is tiny, 
the small regions (of large velocity gradients) 
where viscosity is important can have global 
effects. For example, it is the viscous boundary 
layer required to satisfy the non-slip condition 
that is responsible for flow separation in an 
adverse pressure gradient, whilst for erodible 
boundaries the surface shear stress is responsible 
for sediment suspension. 
 

Prandtl’s boundary-layer hypothesis: idealise the flow 
as an outer inviscid layer driven by pressure gradients, 
matched with a thin inner layer (across which the 
pressure is effectively constant) to satisfy the no-slip 
condition. The inner-layer solution is often derived by 
a forward-marching calculation (see below). 
This sort of flow decomposition (“viscid-inviscid 
interaction”) is widely used for aerofoils: 
 outer flow → pressure distribution and hence “ form” lift and drag; 
 inner flow → viscous drag (small). 
 
The boundary-layer hypothesis is OK if the boundary layer is thin, slowly-developing and 
doesn’ t separate. Using a potential-flow method in the outer layer offers considerable 
computational savings. However, matching-type calculations are seldom used in general-
purpose codes because: 
• they limit the class of flows which can be computed; 
• the matching region is difficult to establish a priori; 
• they don’ t work when the flow separates. 
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3.5 Hydrostatic Approximation 
 
The vertical momentum equation can be written as 

forcesviscousg
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For large horizontal scales the vertical acceleration Dw/Dt is much less than g and hence the 
balance of terms is the same as the hydrostatic law in a quiescent fluid. 
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Consequence. With this approximation (in constant-density 
flows with a free surface) the pressure is determined 
everywhere by the position of the free surface: 
 ),(where,)( yxhhzhgpp atm =−+=  

 
This results in a huge saving in computational time because 
the pressure is known everywhere from the surface height and 
it is unnecessary to solve a separate equation for pressure. 
 
The hydrostatic equation is widely used in conjunction with the depth-averaged shallow-
water equations (see below). 
 
 
3.6 Boussinesq Approximation (Density-Driven Flows) 
 
For constant-density flows, pressure and gravitational forces in the z-momentum equation can 
be combined through the piezometric pressure p* = p + gz. Gravity need not explicitly enter 
the momentum equations unless: 
• pressure enters the boundary conditions (e.g. at a free surface); 
• there is variable density. 
Density variations may arise: 
• in compressible flow at high speeds; 
• because of changes in temperature or humidity (atmosphere), or salinity (water). 
 
Temperature variations in the atmosphere, brought 
about by surface (or, occasionally, cloud-top) heating or 
cooling, are responsible for significant changes in 
airflow and turbulence: 
• on a cold night the atmosphere is stable – cool, 

dense air collects near the surface; vertical 
motions are suppressed; the boundary layer 
depth is 100 m or less; 

• on a warm day the atmosphere is unstable – 
surface heating produces warm; light air near 
the surface, convection occurs; the boundary 
layer may be 2 km deep. 

 
Characteristics of pollution dispersion are very different in the two cases. 
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If density  is a function of some scalar  (typically, temperature or salinity), then the 
relative change in density is proportional to the change in ; i.e. 
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where 0 and 0 are some reference scalar and density respectively and  is the coefficient of 
expansion; (the sign convention adopted here is that for salinity, where an increase in salinity 
lead to a rise in density – the opposite would be true for temperature-driven density changes). 
 
The Boussinesq approximation amounts to retaining density variations in the gravitational 
forces but disregarding them in the advection (mass × acceleration) term; i.e. 
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The approximation is justified if relative density variations are not too large; i.e. 

1
0

�  

This condition is usually satisfied in the atmosphere and oceans. 
 
Actually, whilst the Boussinesq approximation is necessary for theoretical work, it is not 
particularly important in general-purpose CFD, because the momentum and scalar transport 
equations are solved iteratively and any scalar-driven density variations are easily 
incorporated at each update. 
 
 
3.7 Depth-Averaged (“ Shallow-Water” ) Equations  
 
These describe flow of a constant-density fluid with a free surface, where the depth of fluid is 
small compared with typical horizontal scales.  
 
In this “hydraulic”  approximation, the fluid can be regarded 
as quasi-2d with: 
• horizontal velocity components u, v; 
• depth of water, h. 
 
Note that h may vary due to changes in both free-surface and 
bed height. The vertical component of velocity may be 
neglected in comparison with the horizontal velocity. 
 
By applying mass and momentum principles to an arbitrary vertical column of constant-
density fluid of height h, the depth-integrated equations governing the motion can be written 
for the one-dimensional (v = 0) case as: 

h(x,t)
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The 2
2
1 gh term comes from the total hydrostatic pressure force on a column of water of 

height h. The net stress ( ) arises from the difference between the surface stress (due to wind) 
and the bed shear stress (due to friction). 
 
Mathematically, the resulting shallow-water equations are analogous to those for a 
compressible gas. There are direct analogies between hydraulic jumps (shallow-water flow) 

and shocks (compressible flow). In both cases there is a characteristic wave speed ( gh  in 

the hydraulic case, /p  in compressible flow). Depending on whether this is greater or 

smaller than the flow velocity determines whether disturbances can propagate upstream. In 
the hydraulic case this is determined by the Froude number 

gh

u=Fr  

whilst in the high-speed-flow case it is the Mach number 

c

u=Ma  

 
 
3.8 Reynolds Averaged Equations (Turbulent Flow)  
 
The majority of flows encountered in engineering are turbulent. Most, however, can be 
regarded as small time-dependent and 3-d fluctuations superimposed on a much simpler mean 
flow. Generally, we are only interested in the mean quantities – the mean flow itself or root-
mean-square (rms) levels of turbulence – rather than details of the time-dependent flow. 
 
The process of Reynolds-averaging (named after 
Osborne Reynolds, first Professor of Engineering at 
Owens College, later to become the Victoria University 
of Manchester) decomposes each flow variable into 
mean and turbulent parts: 

nfluctuatiomean

uuu ′+=
 

 
The “mean” may be a time average (this is usually what is measured in the laboratory) or an 
ensemble average (a hypothetical statistical average over a large number of identical 
experiments). 
 
When the averaging process is applied to the Navier-Stokes equation, the result is: 
• an equivalent equation for the mean flow, 

except for  

• turbulent fluxes, vu ′′−  etc. (called the Reynolds stresses) which provide a net 
transport of momentum. 

 

mean fluctuation  
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For example, the viscous shear stress 

y

u
visc ∂

∂=  

is supplemented by an additional turbulent stress (see Section 7): 

vuturb ′′−=  

 
In order to solve the mean-flow equations, a turbulence model is required for these turbulent 
stresses. Popular models exploit an analogy between viscous and turbulent transport and 
employ an eddy viscosity t to supplement the molecular viscosity. Thus, 
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This is readily incorporated into the mean momentum equation because it simply requires a 
(position-dependent) effective viscosity. However, actually specifying t is by no means 
trivial – see the lectures on turbulence modelling. 
 
 
3.9 Potential Flow 
 
In constant-density flows the angular momentum of a fluid element can only change due to 
the action of viscous forces (since pressure forces always act perpendicular to a surface and 
cannot impart rotation). For an ideal (inviscid) fluid the flow can be regarded as irrotational. 
For such flows it can be shown that the velocity u can be related to a velocity potential via: 
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Substituting in the continuity equation, 0=
∂
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, produces a Laplace equation for φ: 

02 =φ∇  
 
Important consequence. The entire 3-d flow field is completely described by a single scalar 
equation. 
 
Velocity components u, v and w are obtained by differentiating φ. Pressure is then 
recoverable from Bernoulli’s theorem: 

constantUp =+ 2
2
1 (along a streamline) 

 
This often gives an adequate description of the flow and pressure fields for real fluids, except 
very close to solid surfaces where viscous forces are significant. Since Laplace’s equation 
occurs in many branches of physics, a lot of good solvers exist. However, in ignoring the 
effects of viscosity it says absolutely nothing about the tangential stresses on boundaries and 
leads, in particular, to the erroneous conclusion that an object moving through a fluid 
experiences no drag. 
 


