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1.1 What is Computational Fluid Dynamics? 
 
“Computational fluid dynamics”  is simply the use of computers and numerical techniques to 
solve problems involving fluid flow. 
 
Computational fluid dynamics (CFD) has been successfully applied in many areas, including 
those that are the natural arena of civil engineers (highlighted below). Examples include: 
•  aerodynamics of aircraft and automobiles; 
•  hydrodynamics of ships; 
• engine flows – IC engines and jet engines; 
• turbomachinery – pumps and turbines; 
• heat transfer – heating and cooling systems; 
• combustion; 
• process engineering – mixing and reacting chemicals; 
• windpower; 
• wind loading – forces and dynamic response of structures; 
• building ventilation; 
• fire and explosion hazards; 
• environmental engineer ing – transport of pollutants and effluent; 
• coastal and offshore engineer ing – loading on coastal and mar ine structures; 
• hydraulics – pipe networks, reservoirs, channels, weirs, spillways; 
•••• sediment transport – sediment load, scour  and bed morphology; 
• hydrology – flow in r ivers and aquifers; 
• oceanography – tidal flows, ocean currents; 
• meteorology – numerical weather forecasting; 
• high-energy physics – plasma flows; 
• biomedical engineering – blood flow in heart, veins and arteries; 
• electronics – cooling of circuitry. 
 
This range of applications is very broad and encompasses many different fluid phenomena. 
Accordingly, many of the techniques used for high-speed aerodynamics (where 
compressibility is a dominant feature and viscosity comparatively unimportant) are different 
from those used to solve low-speed, frictional and gravity-driven flows typical of hydraulic 
and environmental engineering. Although many of the techniques learnt will be general, this 
course will focus primarily on viscous, incompressible flow by the finite-volume technique. 
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1.2 Basic Fluid Mechanics 
 
1.2.1 Definitions 
 
A fluid is a substance that continuously deforms under a shearing force, no matter how small. 
 
Fluids may be liquids (having a definite volume and a free surface) or gases (expand to fill 
any container). 
 
Fluid motion will be treated by continuum mechanics (not individual molecules). Note, 
however, that it is inter-molecular forces that give rise to viscosity. 
 
Hydrostatics is the study of fluids at rest; hydrodynamics is the study of fluids in motion. 
 
Hydraulics is the study of the flow of liquids (usually water); aerodynamics is the study of 
the flow of gases (usually air). 
 
All fluids are compressible to some degree, but their flow can be approximated as 
incompressible (flow-induced pressure changes don’ t give rise to density changes) for 
velocities much less than the speed of sound (1480 m s–1 in water, 340 m s–1 in air). 
 
An ideal fluid is one with no viscosity; it doesn’ t exist, but it can be a good approximation. 
 
Real flows may be laminar (adjacent layers slide smoothly over each other) or turbulent 
(subject to “ random” fluctuations about a mean flow). Turbulence is the natural state at high 
Reynolds number. The majority of engineering and environmental flows are fully turbulent. 
 
 
1.2.2 Notation 
 
Geometry 

x ≡ (x, y, z) or (x1, x2, x3) position; (z is usually vertical) 
t time 

 
Field variables 

u ≡ (u, v, w) or (u1, u2, u3) velocity 
p pressure 

  (p – patm is the gauge pressure;    p* = p + gz is the piezometric pressure.) 
 T  temperature 
 φ  concentration (amount per unit mass or per unit volume) 
 
Fluid properties 

 density 
 dynamic (or absolute) viscosity 
 ≡ /  kinematic viscosity 
 diffusivity of heat (  = k/ cp), salt, pollutant, etc. 
 ≡ g specific weight (weight per unit volume) 

s.g. ≡ / ref specific gravity (or relative density); 
  “ ref”  = water (for liquids) or air (for gases) 
c speed of sound 
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Dimensionless numbers 
If U and L are representative velocity and length scales, respectively, then: 

 Re
ULUL ≡≡  Reynolds number (viscous flow;  = dynamic viscosity) 

 
gL

U≡Fr  Froude number (open-channel flow) 

c

U≡Ma  Mach number (compressible flow; c = speed of sound) 

L

U

Ω
≡Ro  Rossby number (rotating flows;  = angular rotation rate) 

Many other dimensionless combinations occur in fluid mechanics; see, e.g., White (2002). 
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1.2.3 The Fluid-Flow Equations 
 
Statics 
At rest, pressure forces balance weight. This can be written mathematically as 

 zgp −=                 or                 g
z

p

d

d −=  (1) 

The same equation also holds in a moving fluid if there is no vertical acceleration, or, as an 
approximation, if vertical acceleration is much smaller than g. If density is constant then (1) 
integrates to give 
 constantgzpp =+≡*  
p* is called the piezometric pressure; it represents the combined effect of pressure and 
weight. For a constant-density flow without a free surface, gravitational forces can be 
eliminated entirely from the equations by working with the piezometric pressure. 
 
 
Thermodynamics 
Pressure, density and temperature are connected by an equation of state. An example is the 
ideal gas law: 
 mRRRTp /, 0==  (2) 

where R0 is the universal gas constant, m is the molar mass and T is the absolute temperature. 
 
 
Dynamics 
The most important equations are those governing fluid motion. Although expressible in 
many different ways (Sections 2 and 3) they fundamentally represent conservation of:  
• mass; 
• momentum; 
• energy. 
 
 
The Role of the Energy Equation 
The role of energy is different in compressible and incompressible flows. For compressible 
flow internal energy may be changed by heat input; fluid density and pressure are governed 
by the laws of thermodynamics and it is necessary to solve an energy equation. However, for 
incompressible flow, the energy equation is (as in particle mechanics) purely a mechanical-
energy equation, directly derivable from – and equivalent to – the momentum equation. For 
CFD of incompressible flow there is no need to solve a separate energy equation. 
 
Nevertheless, in theoretical work, the energy equation can be convenient. For steady 
incompressible flow it can be expressed as Bernoulli’s equation along a streamline: 

 fluidondoneworkUgz
p =++ )( 2

2
1  (3) 

where ( ) gives the change in energy per unit mass and the RHS represents the energy (per 
unit mass) input by pumps or removed by turbines or friction. For compressible flows the 
energy per unit mass is supplemented by the internal energy e and (3) becomes 

fluidondoneworkfluidtosuppliedheatUgz
p

e +=+++ )( 2
2
1  (4) 

The quantity /pe +  is called the enthalpy. 
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1.3 Different Ways of Expressing the Fluid-Flow Equations 
 
Fluid flows are governed by conservation laws for the transport of: 
• mass; 
• momentum; 
• energy; 
• any additional constituents; 
together with constitutive relations (e.g. for viscous stress or heat flux) and relationships 
between fluid properties (e.g. the ideal gas law).  
 
There are many different ways of expressing these physical principles mathematically. 
 
 
1.3.1 Integral (or Control-Volume) Form of the Governing Equations 
 
In continuum mechanics, conservation laws are expressed most fundamentally in integral 
(“ total-amount-of” ) form. Here, one considers how the total amount of some physical 
quantity (mass, momentum, energy, …) changes within a control volume. 
 
If we consider an arbitrary control volume then the total amount within 
that volume can only change because of: 
• transport across the surface of the control volume (flux); or 
• creation (or destruction) within the control volume (source). 
 
Mass has no sources (can’ t be created or destroyed), but forces are the source of momentum. 
 
In practice we do two things: 
(1) We actually consider the rate of change of the physical property; thus: 
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 The second term is the net outward flux through the surface (“ flow out – flow in”). 
 
(2) The flux (i.e. rate of transport across a surface) has two components: 
  advection – movement with the fluid flow; 
  diffusion – net transport by random (molecular or turbulent) motion. 
  
 Then, for an arbitrary control volume V: 
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The important point is that there is a single gener ic scalar -transport equation of the form 
(5), regardless of whether the physical quantity is x-, y- or z-components of momentum, 
amount of pollutant or whatever. Thus, instead of dealing with lots of equations we can 
consider the numerical solution of the general scalar-transport equation (Section 4). 
 
Discretisation of the integral form of the governing equations is the basis of the finite-volume 
method which is the subject of this course. 

V
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1.3.2 Differential Forms of the Governing Equations 
 
In regions without shocks, interfaces or other discontinuities, the fluid-flow equations 
mechanics can also be written in equivalent differential forms. By using spatial derivatives 
these describe what is going on in the vicinity of a point rather than over a whole control 
volume. Mathematically, they can be derived from the corresponding integral equations 
simply by making the control volume infinitesimally small. 
 
It is also possible to derive other differential forms of the governing equations (for example, 
Laplace’s equation for velocity potential in inviscid flow). 
 
The differential form of the governing equations leads to the finite-difference method.  
 
 
 
1.4 Basic Principles of CFD 
 
The approximation of a continuously-varying quantity in terms 
of values at a finite number of points is called discretisation. 
 
 
 
 
The fundamental elements of any CFD simulation are: 
 
(1) The fluid continuum is discretised; i.e. field variables ( , u, v, w, p, …) are 

approximated by their values at a finite number of nodes. 
 
(2) The equations of motion are discretised; i.e. approximated in terms of values at 

nodes: 
 differential or integral equations  algebraic equations 
 (continuum)  (discrete) 
  
(3) The system of algebraic equations is solved to give values at the nodes. 
 
 
The main stages in a CFD study are: 
 Pre-processing:  
  – problem formulation (governing equations & boundary conditions); 
  – construction of a computational mesh. 
 

Solving: 
– numerical solution of the governing equations. 

 
Post-processing: 
 – plotting and analysis of results. 

 
This is seldom a one-way process – the sequence may be repeated several times with 
different meshes to establish the desired accuracy, or with different values of a parameter to 
examine sensitivity to that variable. 

continuous
curve

discrete
approximation
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1.5 The Main Discretisation Methods 
 
 
Finite-Difference Method 
 
Discretise the governing differential equations directly; e.g. 
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Finite-Volume Method 
 
Discretise the governing integral equations directly; e.g. 

0)()()()( =−+−= snwe vAvAuAuAoutflowmassnet  

 
 
 
 
 
Finite-Element Method 
 
Express the solution as a weighted sum of shape functions – substitute into the governing 
equations (often in the form of a variational principle) and solve for the degrees of freedom 
(i.e. the weights): 
 �= ),(),( tNutu mm xx  

 
 
 
Other specialist methods (e.g. spectral methods) are used in advanced theoretical work. 
 
 
 
This course will focus almost exclusively on the finite-volume method. 
 
The finite-element method is popular in solid mechanics (geotechnics, structures) because: 
• it has considerable geometric flexibility; 
• general-purpose codes can be used for a wide variety of physical problems. 
 
The finite-volume method is popular in fluid mechanics (aerodynamics, hydraulics) 
because:  
• it rigorously enforces conservation; 
• it is flexible in terms of both geometry and the variety of fluid phenomena; 
• it is directly relatable to physical quantities (mass flux, etc.). 
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