
Numerical Simulation of Violent Free Surface through  
a Higher Order SPH Method 

 
Zheng Xing 1 and Duan Wenyang2  

 
1 Deepwater Engineering Research Center, Harbin Engineering University, Room701, Ship&Ocean Building, No.145 Nantong Street, 

Harbin, China, 150001 
E-mail: zhengxing@hrbeu.edu.cn 

 
2 Deepwater Engineering Research Center, Harbin Engineering University, Room302, Ship&Ocean Building, No.145 Nantong Street, 

Harbin, China, 150001 
E-mail:duanwenyang @hrbeu.edu.cn 

 

Abstract 
A higher order smoothed particle hydrodynamics (SPH) is 

used to solve fluid flow problem with large free surface 
deformation. It is a meshless method and is used to solve the 
governing equations based on the Lagrangian description. 
Analysis has shown that the commonly used SPH method does 
not provide sufficient accuracy. The present paper has adopted 
an improved SPH method which provides a higher order 
accuracy. This is verified through a test case with non-uniform 
particle distribution in a rectangular domain. Simulation is then 
made for standing waves. Comparision is made with an 
analytical solution and agreement is good. Further simulation is 
made for the dam breaking problem.    
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1 Introduction 
Violent wave motion is a common phenomenon in 

marine and coastal engineering. When the wave 
encounters a structure in its path, very large impact can 
occur together with wave overturning, breaking and 
splashing. Current research into this kind of problem 
very much depends on laboratory experiment, which can 
be very expansive, time-consuming or even hazardous. 
The other important issue is of course the scaling effect. 
Numerical simulations have also been used for this type 
of problem, e.g., [1] [2] [3]. Although significant 
progress has been made, the success is still very much 
limited, especially to the cases where the free surface 
profile remains smooth. One of the reasons for this is that 
for the adopted mesh based method it is very difficult to 
generate a grid of high quality and high resolution for the 
overturning and breaking waves. The present paper 
investigates the potential of a non-mesh based method for 
the violent free surface.   

Smoothed Particle Hydrodynamics (SPH) method is 
a meshless technique. It divides the fluid domain into a 
finite number of mass carrying particles. The movement 
of the particles and the pressure distribution in the fluid 
are obtained through solving the momentum equations 
and continuity equation within the Lagranian description 
of the motion. The method was first developed to 

simulate the evolution in astrophysics [4] [5], and was 
extended to free surface flow problem by Monaghan [6]. 
Because the path of each particle is tracked in SPH, the 
movement of particles can implicitly satisfy the 
kinematic condition on the free surface [7]. Because it 
does not require a mesh, it has the potential to deal with 
the complex free surface flows. Lo & Shao [8] used SPH 
method together with a large eddy simulation approach to 
simulate the near-shore solitary wave. Colagrossi & 
Landrini [9] applied SPH method to the two-dimensional 
interfacial flows. Souto et al [10] calculated the phase lag 
between the tank motion and the liquid response moment 
by SPH method. Furthermore sloshing moment 
amplitudes at a wide range of rolling frequencies were 
also obtained using SPH by Souto et al. [7]. 

However, being a relatively new comer, SPH still 
requires further refinement despite all the progress. For 
example, it is common to introduce an artificial term to 
correct the movement of the particle. This correction is 
non-physical. Its introduction is mainly to improve the 
stability of the scheme. Furthermore, the conventional 
low order SPH cannot provide results of high accuracy, 
especially in the area near the boundary of the fluid 
domain. 

In this paper, the conventional SPH formulations are 
first introduced. Then a higher order smoothed particle 
hydrodynamics method is presented. A test case with a 
rectangular domain is chosen. When particles are 
distributed either uniformly or non-uniformly, the higher 
order SPH method is found to give more accurate results 
than conventional SPH method. The higher order SPH 
method is then used to simulate standing wave and dam 
breaking problem.  
 

2 Conventional SPH formulations 
The basic principle of SPH is that a function  

and its spatial derivative can be approximated as 
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For the free surface flow problems, the discretised 
governing equations of SPH can be obtained from the 
continuity equation and momentum equations.  If we 
ignore the viscosity, these equations can be written as  
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where  is the velocity component in the direction of 

the  axis and , 

αV

αx βββ
jiij VVV −= P  is the pressure and 

 is the external volume force such as that due to 

gravity. When the velocity is obtained, the movement of 
the particle is obtained form   
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in which the second term on the right hand side is a 
correction term. ε  in the equation is the velocity 
average correction coefficient, which is usually chosen 
between 0 and 1.  

The relationship between pressure and density is 
assumed to be governed by the following equation   
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where 000 and 0  is the artificial sound speed. 
In the following calculations 

γρ /2CP = C
7=γ  is taken and when 

the fluid is water,  is taken as ten times maximum 
velocity. 
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3 A higher order SPH method 

3.1 Accuracy analysis of conversional SPH method 

To perform consistency analysis, it is quite 
illustrative to use a one dimensional problem. Assuming 
the length of the support domain is  and applying the 
Taylor expansion of  at the centre of the 
domain , we can write Eq. (1) as    
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in which W is of order  has been taken into 
account. Since  and  if we 
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Similarly, for the first order derivative, we have  
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in which  has been taken into account. If 
we notice , , 

, Eq.(13) can be rewritten as 
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For the second order derivative, we write  
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It may appear that Eqs.(12), (14) and (15) all give the 
second order accuracy. The fact is when Eq.(12) is used, 
the accuracy of  is order . When 
Eq.(12) is substituted into (14), we then have  
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because . If we further substitute 
Eq.(16) into Eq.(15) and use the same argument, we find  
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This shows that in the conventional SPH method the 
error of the second order derivative does not decay with 

. This is similar to what has been found in the 
conventional mesh based method [11].   
h

 

3.2 Accuracy analysis of the higher order SPH 

We can include the second order derivative in Eq.(12). 
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If substitute Eq.(18) into Eq.(16), it can be easily seen the 
order of accuracy becomes . Subsequently, the 
order of accuracy of Eq.(17) becomes . This is 
consistent with what has been found in the mesh based 
method (Wu & Hu 2007a) 
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We now use a test case to verify the above derivation. 
A square domain with  is chosen. 
Within this domain we define a function 

, and then apply both the 
conventional and the high order SPH methods. We first 
write the Taylor expansion of  at the point 

 as 
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where the subscripts  and i j  indicate location and the 
subscripts x  and  indicate the derivatives. 
Multiplying both sides of Eq.(19) by W , , , 

, ,  repsectively, and integrating the results 
over the support domain , we can get  
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3,2=k  and ,1=m  if . We can substitute 
the expression of into the left hand of Eq.(20) and 
perform all the integration. The result gives a 
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matrix equation which can be solved to obtain , , 

, , , . Non-uniform particle distribution 
is used as shown in Fig.1. Fig.2 is a reproduction of Fig.1 
but with ghost points denoted by hollow dots. The 
relative accuracy of the function and its derivatives from 
the conventional SPH method is shown in Fig.3 to 8. 
Very large error can be observed. When the higher order 
SPH method is used, the average of the relative errors 
corresponding to Figs.3-8 is shown in Fig.9 and is found 
to be negligible. This clearly shows the advantage of the 
higher order SPH method. More details of the results and 
analysis can be found in Zheng & Duan [12]. 
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Figure1: Non-uniform particles in the domain          Fig.2 Non-uniform particle distribution 

                                                   with ghost points 
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Fig.3 Error distribution of                         Fig.4 Error distribution off xf ∂∂  
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Fig.5 Error distribution of yf ∂∂                      Fig.6 Error distribution of 22 xf ∂∂  
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Fig.7 Error distribution of )(2 yxf ∂∂∂                  Fig.8 Error distribution of 22 yf ∂∂  
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Fig.9 Average of errors by high order SPH 

 

4 Numerical results 

4.1 Standing wave 

Based on the incompressible and inviscid theory, the 
velocity potential of the linear standing wave can be 
written as  
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which is related to the frequency through , 
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Fig.10 Particle distribution at initial time            Fig.11 Particle distribution at 0.75s 
In the SPH simulation, the initial wave elevation is 

taken as 0=η , and the initial velocity field is determined 
by Eq.(23) and (24). We then consider a case with water 
depth m, wave length m and 

. 800 particles are used in fluid domain. The 
initial particle distribution is shown in Fig.10. The circles 
are fluid particles, the squares, deltas and diamonds are 

ghost particles below the bottom, above the free surface 
and beyond the periodic boundaries respectively. The 
position of each particle is located at the centre of each 
symbol. Arrows represent the velocity direction. The ghost 
particles are redistributed at each time step and Fig.11 
shows the particle distribution at 0.75s.
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Fig12.  Standing wave profile at t=0.25s        Fig13.  Standing wave profile at t=0. 50s 
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Fig14.  Standing wave profile at t=0.75s        Fig15.  Standing wave profile at t=1. 00s 
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Fig16.  Standing wave profile at t= 1.25s        Fig17.  Standing wave profile at t=1. 5s 
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Fig18.  Standing wave profile at t=1.75s        Fig19.  Standing wave profile at t=2.0s 

The results of standing wave simulation are shown as 
Fig.12~Fig.19 after every . Hollow dots are from the 
linear analytical solution, and solid dots are from the SPH 
simulation. The phase of wave elevation is very similar 
from the two methods. The results are in good agreement 
over all.  There exist some differences between maximum 

wave crest and trough. Part of the reason is the SPH result 
is fully nonlinear while the analytical solution is linear. For 
the standing wave, the linear wave elevation can be 
completely flat or zero. When this happens, a small wave 
elevation can make big relative error. This explains the 
rather large difference in Fig.18. 
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4.2 Dam breaking 
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t=0.0s                 t=0.25s                t=0.50s                t=0.75s 
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t=1.00s                 t=1.25s                t=1.50s                t=1.75s 
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t=2.00s                 t=2.25s                t=2.50s                t=2.75s 

Fig.20 Numerical simulation process of dam breaking 



Dam breaking is a widely used example in 
numerical simulations of free surface flow. In the case 
considered here, the height of initial water column is 
1.0m and the width is 0.5m. A solid wall is placed at 
distance of 2.0m away from the dam. 1250 free fluid 
particles are used. The time step is taken as s.  
Snapshots at different time steps of the numerical 
simulation are shown in Fig.20. It provides the process 
of water first moving towards the solid wall. After the 
collision it will move back and sloshing motion then 
starts.   

410−

 
5 Conclusions  

    In this paper, the foundation of traditional SPH 
method is introduced first, and then the accuracy 
analysis of kernel approximation is given, which 
demonstrates the low accuracy of traditional method, 
especially on the boundary domain. The improved 
method of traditional, C2SPH method is presented. 
According to the numerical test in rectangle area with 
particle non-uniform distribution, C2SPH can get high 
accuracy results, especially on the boundary domain. 
Simulation of standing wave is introduced to verify the 
improved of the new method, although there are some 
small differences between linear series solution and high 
order SPH solution. Finally, dam breaking is given to 
verify the advantage of SPH for violent free surface 
flow simulation. 
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