船体内场业务流程分析及应用研究

何宝建,马晓平,孔惠敏 (江苏科技大学 船舶与海洋工程学院,江苏镇江 212003)

提 要 通过分析船体内场业务流程及其基本思路,绘制出了船体内场业务流程图。并在此基础上,利用VBA程序语言、ACCESS 数据库和 EXCEL 表格,设计开发了船体内场生产管理辅助软件。该软件把零件表内容转入数据库,集合所有零散分段的加工内容,方便管理人员查寻,为造船生产工作计划的编制提供了基础。

关键词 造船 业务流程 中图分类号 U673 文献标识码 A

1 引言

造船是一项复杂的系统工程,船厂的设计、生

产、管理等大量的数据分析基本都依靠计算机技术作为重要的支撑。内场由于其工作的特殊性(工位、工种繁多,加工制造的对象庞大),使得即使某工位效率再高也不可能达到整体上的效率最大化,因此内场工作管理的重点应放在如何使生产均衡,中间运输和等待加工等的无效时间为最短等方面。正由于内场是具有大量物料和加工信息流动的场所,所以弄清内场物料和加工信息流的走向,是内场能均衡生产的基础。如何使物流和信息流相适应,编制一个生产管理程序,实现管理人员对物料流动、加工工时、人员安排等的准确定位,是实现生产均衡的重要前提。

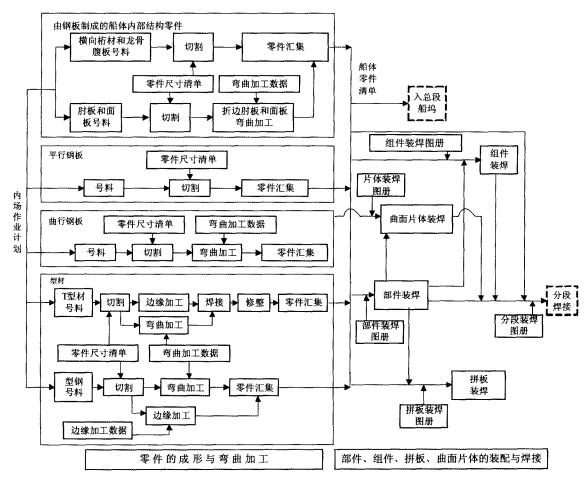


图 1 船体内场业务流程图

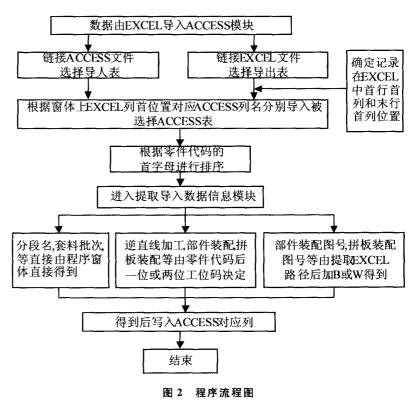
2 船体内场业务流程分析

内场加工与制造的对象是经过预处理后的钢板和型材,除钢材加工前的预处理外,基本上不涉及船体舾装与涂装的内容,在这里最大的矛盾就是如何使大量零部件的制造、拼板、组件等的加工能够持续不断地以流水式生产模式进行,尽量减少生产过程中的库存和等待时间,而不在某一工位出现脱节现象,使物料、能量、信息能够恰好在需要的地方出现。这就需要在生产之前进行周密的计划,使整个船体内场加工能够在时间上有序、空间上分道、持续、均衡地生产,其船体内场业务流程见图 1。在整个内场加工阶段,可分为两个阶段。

- (1) 第一阶段,零件加工。船体零件加工是船体建造中的第一制造级,它生产船体建造中不能进一步再分解的构件或者区域。零件加工主要包括型材和板材的加工,其中板材加工分为弯曲加工和边缘加工,型材加工分逆直线加工和平直加工。根据成组技术的相似性原理,把它们划分成门类繁多的中间产品后,按一定的准则进行分类成组,以便用相同的施工方法扩大中间产品的成组批量。
- (2) 第二阶段,部件、组件、拼板、曲面片体的装 配与焊接。为了能够充分利用相似性原 理,部件、组件、拼板、曲面片体的装配与 焊接也都最好各成加工道,但由于组件, 拼板,曲面片体都要用到零部件,所以不 可能以平行加工的形式来制造它们,而 要考虑到它们之间的关系。这要看零部 件与哪个制造工位的关系密切,因为大 部分零件要制造成部件,而大部分的部 件要直接进入分段加工区进行分段的装 焊。只有平直的板、平直的型材和少量 弯曲度不大的型材才进入拼板装焊区, 只有弯曲的板、弯曲的型材和少量平直 的型材才进入曲面加工区进行曲面片体 的装焊。而组件的装焊则主要由钢板制 成的船体内部结构零件和少量型材构 成,因此在布置工位时应当考虑这些因 素的影响,才能减少零部件在路上的运 输这一无效时间,达到真正的连续,均衡 的生产,并且还能够节省人力,物力,使 生产有序。

3 船体内场生产管理辅助软件开发

3.1 程序的开发思路


为了达到生产的均衡化,管理者必需了解本部 门上至一年,下至每天的工作计划和工作量,这样在 人员分配,物料管理等方面管理人员也就有了第一 手资料,并及时地反馈给上一级管理部门,以便上一 级管理部门在分配任务时,能够做出正确的决策,确 保船厂及时完成本年度生产计划。造船是一项十分 庞大的系统工程,如果没有强大的自动化系统作为 支撑,则完成生产作业的均衡化和并预知每天的工 作计划将是一件十分繁重的任务。如果进行人工干 预、编写,错误也再所难免,每天的工作计划的准确 度也就值得怀疑了,那么编制管理作业计划也就没 什么实际意义了。本管理辅助软件的编制就是为了 解决现代造船模式下实现均衡生产的目的编制的, 基本上实现了生产设计完成后编制成的 BOM 表中 的内容导入 ACCESS 中,方便了生产管理者的 杳询。

3.2 程序的编写

3.2.1 程序流程图(图 2)

3.3 程序实例

本程序已能将一艘船所有分段的零件表数据导

人 ACCESS 内的一个数据库表内,已经达到整艘船生产设计数据同时能够检索的目的。如果多艘船所有分段零件需同时导入一个数据库的相同数据表内,则应保证两艘船分段名和零件代码不一样,否则系统将覆盖上一次导入的相同数据。多艘船生产设计零件表内容导入 ACCESS 内的数据表,应按上述步骤一一进行导入不同的数据表。在分段数据导入ACCESS 内的数据表时,对导入数据进行检索分类是按照数据存储规则进行分类的。

4 总结

本文对船体内场业务据流程进行了分析优化, 绘制出了船体内场业务流程图,同时设计了内场生 产管理辅助软件,该软件能够将零件表内容转入数 据库,集合所有零散分段的加工与制造内容,方便管理人员是编制工作计划,使管理人员在信息处理、物料需求、人员需求等方面提前做足准备,不至于在某一工位出现人员窝工、物料等待等不利于流水生产的现象。

5 参考文献

- 1 翁德伟. 造船成组技术. 上海:上海交通大学出版社
- 2 中国船舶工业总公司造船生产设计指导组编. 造船生产设计. 北京:国防工业出版社
- 3 姚巍. Visual Basic 数据库开发及工程实例. 北京:人民邮 电出版社
- 4 关清玉,陈宁.船舶生产设计日程管理系统研究.船舶, 2005,(5):24

[上接第 12 页]

由上表易得,三个等式约束的满足程度高达 99.99%以上;同时,不等式约束均获得100%的满足,说明上述优化方法计算可靠性良好。

4.2 结果分析

根据表 2,经过比较易得结论如下:

- (1) 基于遗传算法 6000 代的优化计算的总目标函数值为 0.85074,较基于 1000 代遗传算法的 (12 个种群)并行遗传算法的优化计算的目标函数值 0.86350 低约 1.48%,呈现出明显的早熟特征;可见并行算法明显占优。
- (2) 基于分层并行遗传算法优化计算的目标函数值等于 0.87919,比基于 1000 代并行遗传算法的高 1.82%、比 6000 代遗传算法的高 3.34%。可见,分层并行遗传算法构造可以非常有效地提高求解复杂三多(多目标、多约束和多变量)工程优化问题的计算效率。

5 结束语

综上所述,本文提出了一种基于敏感变量分段的分层并行遗传算法,并应用于内河大型船舶快速性能及结构力学特性综合优化计算,结果表明:该算

法不但能有效地克服遗传算法的早熟问题,而且计 算效率高。为有效解决复杂的三多(多目标、多约束 和多变量)工程优化设计问题,提供了一种可借鉴的 徐径。

6 参考文献

- 1 [美]Z. 米凯利维茨,著. 周家驹,译. 演化程序——遗传算法与数据编码的结合. 北京: 科学出版社,2000.
- 2 刘勇,康立山,陈毓屏.非数值并行算法第二册·遗传算法. 北京,科学出版社,1998.
- 3 王健,王建华. 标准遗传算法的研究进展. 华东船舶工业 学院学报,2000,(3):28
- 4 Yang Songlin, Zhang Huoming, Zhu Renqing, et al. The Synthesis Optimization of Ship Navigation Performance Based on Fuzzy-Genetic Algorithm. Third Conference for New Ship and Marine Technology. May 21-23, 2002. Kobe, Japan.
- 5 Yang Songlin, Zhou Yulong. A design method of hull form parameters for large-scale ship's optimal integrative navigation performance. Journal of Ship Mechanics, 2005,(6):