
 

17 The Tribon Geometry Macro Facility  

 

User's Guide Vitesse 
 

  
Copyright © 1993-2005 AVEVA AB 



 

17.1 General  
The Tribon Geometry Macro Facility is a program used to create predefined geometry. The main 
purpose of using geometry macros in Tribon M3 is to create design standards. Example of such 
standards are profile cutouts in Tribon Hull and ventilation volumes in Tribon Ventilation.  

Note:   Previous versions of Tribon further allowed any user to define geometry macros creating 
drawings and sub-pictures. However, this is in Tribon M3 no longer supported. Instead Tribon Vitesse 
functions for Drafting should be used.  

The geometry is put into the current drawing or volume.  

 

User's Guide Vitesse 
Chapter: The Tribon Geometry Macro Facility 

  
Copyright © 1993-2005 AVEVA AB 



 

17.2 Introduction  
In interactive Tribon applications, 2D drawings are built up by different interactive functions of the 
applications. Similarly, 3D figures can be created by the combination of volume primitives. These 
operations normally work on entity level, i.e. by the addition of lines, arcs, texts, etc. or by the 
duplication of information of the drawing.  

However, in many situations the drawing or volume to be created is parenthesized, i.e. controlled by a 
relatively small number of parameters and/or conditions.  

The Tribon Geometry Macro Facility has been developed as a tool to create such drawings/volumes by 
defining a number of parameters in calls of geometry macros.  

A geometry macro is written as a text in a format like a programming language.  

The elements of the language are:  

l the geometrical entities that can be created  
l "program logic", like branching and loops  
l basic arithmetics, logical and trigonometrical operations  

Details about all these things can be found below.  

 

User's Guide Vitesse 
Chapter: The Tribon Geometry Macro Facility 

  
Copyright © 1993-2005 AVEVA AB 



 

17.3 Functions  
 

User's Guide Vitesse 
Chapter: The Tribon Geometry Macro Facility 

  
Copyright © 1993-2005 AVEVA AB 



 

17.3.1 Entities of the Geometry Macro  
A geometry macro used for a drawing or a sub-picture may generate the following entities:  

l point  
l vector  
l line  
l arc  
l circle  
l contour  
l spline  
l symbol  
l text  
l text file  
l layer  
l line type  
l attribute  
l note  
l hatch pattern  

A geometry macro used for volumes may generate the following entities:  

l point  
l vector  
l parallelepiped  
l cylinder  
l cone  
l spherical segment  
l general cylinder  
l toroid  
l polygon  
l rotational primitive  
l attribute  

One geometry macro can define either a 2D drawing/sub-picture or a 3D volume. However, some of the 
volume primitives use 2D entities as parameters.  

 

User's Guide Vitesse 
Chapter: The Tribon Geometry Macro Facility 

  
Copyright © 1993-2005 AVEVA AB 



 

17.3.2 Additional Functions  
The following functions can be used in any macro:  

l assign  
l colour  
l branching: if.. 

. 

. 

. 
else 
. 
. 
. 
endif 

l loop  
l conditional loop: while.. 

. 

. 

. 
endwhile 

l table (formatted output)  

 

User's Guide Vitesse 
Chapter: The Tribon Geometry Macro Facility 

  
Copyright © 1993-2005 AVEVA AB 



 

17.3.3 Operators and System Functions 

 

User's Guide Vitesse 
Chapter: The Tribon Geometry Macro Facility 

AND  logical and  
+  add  
-  change sign  
&  concatenate strings  
%  division  
**  exponentiation  
==  qual  
>  greater than  

greater equal  
<  less than  

less equal  
*  multiplication  
NOT  logical not  
...  not equal  
OR  logical or  
-  subtraction  
XOR  logical exclusive or  
AB  absolute value  
ACO  arcus cosine (radians)  
ACOSD  arcus cosine (degrees)  
ASIN  arcus sine (radians)  
ASIND  arcus sine (degrees)  
ATAND  arcus tangent (radians)  
ATAND  arcus tangent (degrees)  
BYTE  character whose ASCII code is the argument of BYTE  
COS  cosine (radians)  
COSD  cosine (degrees)  
DEGREE  angle in degrees to angle in radians  
SIN  sine (radians)  
SIND  sine (degrees)  
SQRT  square root  
TAN  tangent (radians)  
TAND  tangent (degrees)  
SUBSTR  substrings  
LENGTH  length of a string  
INDEX  position of a specified sub-string within a string  
NRCHAR  number of character with specified number of decimals  

  
Copyright © 1993-2005 AVEVA AB 



 

17.3.4 Creation of a Geometry Macro  
The geometry macro is created by writing a geometry macro source text in a special macro language. 
This language is similar to other languages used for input to various Tribon applications. The syntax of 
the Tribon Geometry Macro Language is given in Syntax of Tribon Geometry Macro Language. The 
source text is stored in an ordinary text file with an arbitrary name (= the name of the macro). It can thus 
be created using an ordinary editor. Only capital letters, digits and _ (underscore) are allowed 
characters in the macro and file name.  

 

User's Guide Vitesse 
Chapter: The Tribon Geometry Macro Facility 

  
Copyright © 1993-2005 AVEVA AB 



 

17.3.5 Execution of a Geometry Macro  
The geometry macro can be executed either from Tribon Drafting or as a stand alone program. The 
following is valid for both cases.  

The first time the macro is to be executed, the file name must be given, including the file type. It is 
assumed that the geometry macro is stored on the directory given by the logical variable 
SBB_GEO_MACRO_SRC. The interpreter will then check the syntax of the macro in the source file (the 
macro is "compiled").  

The result of the interpretation is given in a list file containing a list of the syntax together with possible 
error messages. The name of the list file is <source_file>.LST and the list file will be created on the 
directory given by the logical variable SBB_GEO_MACRO_LST.  

If the interpretation was successful, a "compiled" version of the syntax will be stored on a directory given 
by the logical variable SBB_GEO_MACRO_BIN. The name of the "compiled" version of the syntax is 
<source_file>.GLB. At the subsequent executions of the geometry macro, it is sufficient to give the 
macro name and the "compiled" version will be read, after which the execution will start.  

Note, the following paragraph is only valid when a project is shared between Windows and UNIX/VMS.  

In case that the Tribon Geometry Macro is used in a project that is shared between platforms, and the 
project is located on a UNIX or VMS machine, the file handling differs a bit from what is described 
above. The list file emanating from a compilation on Windows (<source_file>.LST) will be placed in 
the directory indicated by the operating system environment variable TEMP, e.g. c:\Temp. Since the 
compiled format differs between platforms, it is necessary to have the compiled files 
(<source_file>.GLB) stored on each platform respectively. This also means that the macros have to 
be compiled once on each platform. The logical variable SBB_GEO_MACRO_BIN_NT is used to 
indicate the directory used for compiled binary files on the Windows platform. Note that the source files 
are still fetched from the directory indicated by SBB_GEO_MACRO_SRC, even if that is on another 
platform. If you do not share projects, that is, you run only on the Windows platform, you do not have to 
set the variable SBB_GEO_MACRO_BIN_NT, and the compiled files will end up in the directory 
SBB_GEO_MACRO_BIN.  

 

User's Guide Vitesse 
Chapter: The Tribon Geometry Macro Facility 

  
Copyright © 1993-2005 AVEVA AB 



 
Stand Alone Program  
If the Geometry Macro is run as a stand alone program, the result can be presented in a number of 
different ways. The following activities are available:  

1. Print on terminal  
2. Create 2D geometry and store on data bank  
3. Create 3D volume model and store on data bank  
4. Create 3D volume model + picture and store on data bank  

 

User's Guide Vitesse 
Chapter: The Tribon Geometry Macro Facility 

  
Copyright © 1993-2005 AVEVA AB 



 

17.3.6 Parameters of a Geometry Macro  
The geometry macro can be parameterised, i.e. some parameters are given values at the time of 
execution. A parameter can be an integer number, a decimal number, a text string or a 2D or 3D 
position in the drawing/volume. It is possible to define a command string to each parameter. This string 
will be displayed at the workstation and the operator is prompted to give the parameter value.  

 

User's Guide Vitesse 
Chapter: The Tribon Geometry Macro Facility 

  
Copyright © 1993-2005 AVEVA AB 



 
Submacros in a Geometry Macro  
It is possible to call another geometry macro (submacro) from any macro. Data is transferred from the 
macro to the submacro by parameters. These parameters can have any type.  

The submacro parameters will be assigned the values of the corresponding macro parameters and the 
submacro will be executed. When the submacro execution is finished the macro parameters will be 
assigned the values of the corresponding submacro parameters and the execution of the macro is 
continued. See also The Facility of Using Conditional Statements in a Macro.  

The macro and the submacro can be the same macro so the resulting macro is recursive. See also The 
Possibility to Write Recursive Geometry Macros.  

 

User's Guide Vitesse 
Chapter: The Tribon Geometry Macro Facility 

  
Copyright © 1993-2005 AVEVA AB 



 

17.3.7 Error Handling  
During the execution of a geometry macro, an error handling system is active so that abortions of Tribon 
Drafting due to macro programming errors will be prevented.  

The programmer has the possibility to list any data at the workstation during execution. This will make it 
easier to detect any errors in the macro programming.  

 

User's Guide Vitesse 
Chapter: The Tribon Geometry Macro Facility 

  
Copyright © 1993-2005 AVEVA AB 



 

17.3.8 Execution in Batch  
It is possible to execute a geometry macro in batch. All input to the macro must then be available in an 
ordinary text file and in exactly the same order as they are required by the macro.  

The first parameter in the file must then be the activity and the second one the name of the macro.  

 

User's Guide Vitesse 
Chapter: The Tribon Geometry Macro Facility 

  
Copyright © 1993-2005 AVEVA AB 



 

17.4 Appendices  
 

User's Guide Vitesse 
Chapter: The Tribon Geometry Macro Facility 

  
Copyright © 1993-2005 AVEVA AB 



 

17.4.1 Syntax of Tribon Geometry Macro Language  
 

User's Guide Vitesse 
Chapter: The Tribon Geometry Macro Facility 

  
Copyright © 1993-2005 AVEVA AB 



 
Conventions Used in this Document  
In this document the following conventions are used (cf. "The Tribon Interpretative Language"):  

[  ]optional 
<  >term 
....preceding expression may be repeated  

 

User's Guide Vitesse 
Chapter: The Tribon Geometry Macro Facility 

  
Copyright © 1993-2005 AVEVA AB 



 
Statement Types  
The input language contains the following different statement types: 

User's Guide Vitesse 
Chapter: The Tribon Geometry Macro Facility 

ARC The ARC statement defines a 2D arc. The arc can be used as input to the 
PRESENT and CONTOUR statements.  

ASSIGN The ASSIGN statement assigns a previously defined variable to another 
variable which will get the same type as the first one. However, if a 2D or a 3D 
point has been defined, one of these coordinates can be assigned to a variable 
with type decimal.  

ATTRIBUTE The ATTRIBUTE statement is used to put attributes in the object. The attributes 
contain non-geometrical data and it is possible to store 100 integers, 50 reals 
and 12 strings. Both attribute numbers and the variables can be addressed with 
an alias name defined in an alias file assigned to the logical variable 
SBD_ALIAS.  

CALL The CALL statement is used to call another macro. The parameter types must 
match and the parameters can be used for either input or output purposes. 
There is no limit for the number of levels of submacros.  

CHANGEDRAW The CHANGEDRAW statement is used to change the appearance of an object, a 
component or a subcomponent. This can be done either in one view or in all 
views.  

CIRCLE The CIRCLE statement defines a 2D circle. The circle can be used as input to 
the PRESENT statement.  

COLOUR The COLOUR statement sets the modal colour. Default colour is green. If the 
given colour is an empty string, the background colour will be used.  

CONE The CONE statement defines a 3D cone. The cone can be used as input to the 
PRESENT statement.  

CONNECTIONPOINT The CONNECTIONPOINT statement defines a 3D connection point. The 
connection point can be used as input to the PRESENT statement.  

CONTOUR The CONTOUR statement defines a 2D contour. The contour can be used as 
input to the GENERALCYLINDER and PRESENT statements.  

CURRENT The CURRENT statement makes it possible to structure a drawing or a volume.  
CYLINDER The CYLINDER statement defines a 3D cylinder. The cylinder can be used as 

input to the PRESENT statement.  
DECLARE The DECLARE statement allows the user to specify the type of any variable. The 

default type is DECIMAL. The DECLARE statements must be given directly after 
the MACRO statement.  

DELAY The DELAY statement makes it possible to introduce a delay in a macro. It has 
only an effect when geometry is presented at a workstation.  

DISTANCE The DISTANCE statement assigns a value or a previously defined variable to 
another variable. The value is scaled with the current scale.  

DRAWING_NAME The DRAWING_NAME statement assigns the name of the current drawing to it's 
parameter.  

ELSE The ELSE statement must be used together with the IF statement. If the 
condition given in the IF statement is not fulfilled, then the statements after the 
ELSE statement will be executed.  

ENDIF The ENDIF statement terminates the IF statement.  
ENDLOOP The ENDLOOP statement terminates the LOOP statement.  
ENDMACRO The ENDMACRO statement terminates the MACRO statement.  
ENDWHILE The ENDWHILE statement terminates the WHILE statement.  
EXTRACTION The EXTRACTION statement makes it possible to use Data Extraction to get 

any data item of a stored Tribon object. This statement is optional.  



GENERALCYLINDER The GENERALCYLINDER statement defines a 3D general cylinder. The general 
cylinder can be used as input to the PRESENT statement.  

GET The GET statement enables the user to get a number of variables which will be 
used as parameters.  

HATCH The HATCH statement defines a hatch pattern in a drawing. User defined 
patterns can be created. The hatch pattern may include islands. The hatch 
pattern is used as input to the PRESENT statement.  

IF The IF statement tests an expression and performs a specified action if the 
result of the test is true. All statements between the IF and ENDIF statements 
will be executed. If the expression is false, no action will be taken unless the 
ELSE statement is given. In this case, all statements between the ELSE and 
ENDIF statements will be executed. All statements except the MACRO and 
ENDMACRO statements can be given after the IF statement. The IF statements 
can be nested.  

LAYER The LAYER statement sets the modal layer. The default layer is 0. The layer 
can be given either as a number or as an alias if an alias file exists. The aliases 
should be defined in a file assigned to the logical variable SB_LAYER_ALIAS. 
In this case, geometry, text and symbols will get the same modal layer. To give 
them different layer values, it is possible to use layer classes. The classes are 
defined in a file assigned to the logical variable SBD_LAYER_CLASS.  

LINE The LINE statement defines a 2D line. The line can be used as input to the 
CONTOUR and PRESENT statements.  

LINETYPE The LINETYPE statement sets the modal line type. Default line type is solid. 
The width can also be changed. Default line width is thin.  

LOOP The LOOP statement makes it possible to execute the same statements a 
number of times. All statements except the MACRO and ENDMACRO statements 
can be given after the LOOP statement. The LOOP statements can be nested.  

MACRO The MACRO statement must be the first statement in the macro. Parameters 
may be given and, in that case, they will be given values before the execution 
of the macro.  

NAME The NAME statement is used to define a name on the drawing/ 
subpicture/volume to be created and stored on a data bank. If the statement is 
omitted, the macro name will be used. It is also possible to give the form to be 
used, if any. If the form is omitted, a drawing will be created with no form. The 
scale can also be given for drawings and subpictures.  

NOTE The NOTE statement defines a note in a drawing. The note is used as input to 
the PRESENT statement.  

PARALLELEPIPED The PARALLELEPIPED statement defines a 3D parallelepiped. The 
parallelepiped can be used as input to the PRESENT statement.  

POINT_2D The POINT_2D statement defines a 2D point. The point is used as input to 
several of the other 2D statements. It is also possible to use this statement 
when any of the coordinates are to be changed.  

POINT_3D The POINT_3D statement defines a 3D point. The point is used as input to 
several of the other 3D statements. It is also possible to use this statement 
when any of the coordinates are to be changed.  

POLYGON The POLYGON statement defines a 3D polygon. The polygon is used as input to 
the PRESENT statement.  

PRESENT The PRESENT statement presents the geometry created by the macro.  
PUT The PUT statement makes it possible to print any variable data.  
RANGE The RANGE statement defines a range of variables. The range is used in the 

EXTRACTION and the LOOP statements.  
ROTATIONAL The ROTATIONAL statement defines a 3D rotational primitive. The rotational 

primitive is used as input to the PRESENT statement.  
SPHERESEG The SPHERESEG statement defines a 3D spherical segment. The segment is 

used as input to the PRESENT statement.  
SPLINE The SPLINE statement defines a 2D spline. The spline is used as input to the 



 

CONTOUR and PRESENT statements.  
SPLIT The SPLIT statement splits a model name into project, module and 

subsystems. These items can then be used in the EXTRACT statement.  
SYMBOL The SYMBOL statement defines a symbol. The symbol is used as input to the 

PRESENT statement.  
TABLE The TABLE statement makes it possible to present a number of variables with a 

format determined by the user. The table is used in the PRESENT statement.  
TEXT The TEXT statement defines a text. The text is used as input to the PRESENT 

statement.  
TEXTFILE The TEXTFILE statement defines a text file. The text file is used as input to the 

PRESENT statement.  
TOROID The TOROID statement defines a 3D toroid. The toroid is used as input to the 

PRESENT statement.  
VECTOR_2D The VECTOR_2D statement defines a 2D vector. The vector is used as input to 

other 2D statements. It is also possible to use this statement when any of the 
coordinates shall be changed.  

VECTOR_3D The VECTOR_3D statement defines a 3D vector. The vector is used as input to 
several of the other 3D statements. It is also possible to use this statement 
when any of the coordinates are to be changed.  

VMSJOB The VMSJOB statement is used to execute a job code or command VMS-file.  
WHILE The WHILE statement makes it possible to execute the same statements a 

number of times. The WHILE statement tests an expression and performs a 
specified action as long as the result of the test is true. All statements between 
the WHILE and ENDWHILE statements will be executed. If the expression is 
false, no action will be taken. All statements except the MACRO and ENDMACRO 
statements can be given after the WHILE statement. The WHILE statements 
can be nested.  

  
Copyright © 1993-2005 AVEVA AB 



 
Statement Syntax  
Below, the complete syntax of each statement type is described.  

The ARC Statement  
ARC,<arc_name>,<start_pnt>  
[/ARCMIDPNT=(<mid_pnt>,<end_pnt>)]  
[/ARCRADIUS=(<end_pnt>,<rad>)]  
[/ARCAMPLITUDE=(<end_pnt>,<ampl>)];  
<arc_name> is the name of the arc and will be assigned the type ARC_2D. The maximum length 
of <arc_name> is 32 characters.  
<start_pnt> is the starting point of the arc with type POINT_2D.  

ARCMIDPNT=(<mid_pnt>,<end_pnt>)  
<mid_pnt> is the mid point of the arc when the arc is defined by giving three points. It has the 
type POINT_2D.  
<end_pnt> is the ending point of the arc with type POINT_2D.  

ARCRADIUS=(<end_pnt>,<rad>)  
<end_pnt> is the ending point of the arc with type POINT_2D.  
<rad> is the arc radius when the arc is defined by giving two points + radius. It has the type 
DECIMAL.  

ARCAMPLITUDE=(<end_pnt>,<ampl>)  
<end_pnt> is the ending point of the arc with type POINT_2D.  
<ampl> is the arc amplitude when the arc is defined by giving two points + amplitude. It has 
the type DECIMAL.  

Structure: 

The ASSIGN Statement  
ASSIGN,<variable_1>,<variable_2>  
[/XCOORD]  
[/YCOORD]  
[/ZCOORD];  
<variable_1> is assigned the same value as <variable_2> and will get the same type as the 
first one. The maximum length of <variable_1> and <variable_2> is 32 characters. 
<variable_2> can be an expression or have any of the following types:  
INTEGER  
DECIMAL  
STRING  

User's Guide Vitesse 
Chapter: The Tribon Geometry Macro Facility 

NSEG (INTEGER)  
SEGPARTS(1:NSEG) 

ENDPNT(1:2) (DECIMAL)  
AMPLITUDE(1:2) (DECIMAL)  

Example:  
GET/STRUCTURE=(N,<arc_name>,'NSEG') 
/STRUCTURE=(X,<arc_name>,'ENDPNT',N,1) 
/STRUCTURE=(Y,<arc_name>,'AMPLITUDE',2,'Y'); 



POINT_2D  
LINE_2D  
ARC_2D  
CONTOUR_2D  
CIRCLE_2D  
VECTOR_2D  
SPLINE_2D  
TEXTFILE_2D  
TEXT_2D  
SYMBOL_2D  
NOTE_2D  
HATCH_2D  
EXTRACT  
RANGE  
TABLE  
POINT_3D  
VECTOR_3D  
CONNECTIONPOINT_3D  
CONE_3D  
CYLINDER_3D  
GENERALCYLINDER_3D  
PARALLELEPIPED_3D  
POLYGON_3D  
SPHERESEG_3D  
TOROID_3D  
ROTATIONAL_3D  

XCOORD  
If <variable2> is of type POINT_2D or POINT_3D, then <variable1> can be assigned the 
x coordinate of <variable2>. This variable will get type DECIMAL.  

YCOORD  
If <variable2> is of type POINT_2D or POINT_3D, then <variable1> can be assigned the 
y coordinate of <variable2>. This variable will get type DECIMAL.  

ZCOORD  
If <variable2> is of type POINT_3D, then <variable1> can be assigned the z coordinate 
of <variable2>. This variable will get type DECIMAL.  

The ATTRIBUTE Statement  
ATTRIBUTE,<attr_no>  
/ATTRDATA=(<variable>,<attribute>)....;  
<attr_no> is the attribute number (> 0) and must be given within ' ' if it is addressed with an alias 
name. If <attr_no> is a true number or a variable, it shall not be given within ' '. The maximum 
length of <attr_no> as an alias is 26 characters and as a variable 32 characters.  

ATTRDATA=(<variable>,<attribute>)....  
<variable> is the variable name given as an alias or using the default names. These are I1 - 
I100 for the integers, R1 - R50 for the reals and S1 - S12 for the strings. <variable> shall 
always be given within ' '. The maximum length of <variable> as an alias is 26 characters 
and as a variable 32 characters.  
<attribute> is the data to be stored in the attribute as an integer, real or string (max 26 
characters). <attribute> must be given within ' ' if it is a string but not if it is a true number or 
a variable. The maximum length of <attribute> as a variable is 32 characters.  



The CALL Statement  
CALL,<macro_name>  
[,<arg_1>[,<arg_2>....[,<arg_25>]....]];  
<macro_name> is the name of the submacro. The maximum length of <macro_name> is 32 
characters. Only upper case letters and _ are allowed characters. <arg_1>,<arg_2>, 
....,<arg_25> are the arguments to the submacro. They cannot be expressions but must be 
variables. Any type is allowed. It is important to notice that if a parameter in the submacro is 
changed, the corresponding argument in the calling macro will also be changed. Thus, it is of great 
advantage if an argument is used for either input or output.  

The CHANGEDRAW Statement  
CHANGEDRAW,<obj_type>,<obj_name>  
/COMPID=(<comp_id>)  
/MARKINGCOLOUR=(<marking_colour>)  
/SUBCOMPID=(<subcomp_id>)  
/VIEW=(<view_id>);  
<obj_type> is a keyword describing the type of the object. The following keywords exist:  
PANEL plane and curved panel objects  
CWAY cableway object  
CABLE cable objects  
EQUIP equipment objeACT  
The object type must be a STRING constant.  
<obj_name> is the name of the object to be changed, and has the type STRING.  
<comp_id> is the id of a component of the type INTEGER, and is only used in the case of 
changing a single component.  
<marking_colour> is the new colour of the object. It has the type STRING. The maximum 
length of <marking_colour> is 32 characters. If DEFAULT is assigned as 
<marking_colour>, the geometry will be redrawn in the default colour. In a modelling view the 
default colour is determined by the model and in a diagram view the default colour is determined 
by the General Diagram default file and, if applicable, pipe specification.  
See Tribon M3 Drafting_Appendices for valid Tribon colours  
<subcomp_id> is used in the same manner as <comp_id>, but for subcomponents. It has the 
type INTEGER.  
<view_id> is the id of the view in which to change the object, and has the type INTEGER. If not 
given, the appearance of the object is changed in all views of the current drawing.  

The CIRCLE Statement  
CIRCLE,<circ_name>,<circ_cent>,<circ_rad>;  
<circ_name> is the name of the arc and will be assigned the type CIRCLE_2D. The maximum 
length of <circ_name> is 32 characters.  
<circ_cent> is the centre point of the circle with type POINT_2D.  
<circ_rad> is the radius of the circle. It has the type DECIMAL.  

Structure: 

: 

NSEG (INTEGER)  
SEGPARTS(1:NSEG) 

ENDPNT(1:2) (DECIMAL)  
AMPLITUDE(1:2) (DECIMAL)  

Example:  



The COLOUR Statement  
COLOUR,<col>;  
<col> is the new modal colour. It has the type STRING. The maximum length of <col> is 32 
characters.  

See Tribon M3 Drafting_Appendices for valid Tribon colours.  

Empty String means the background colour.  

The CONE Statement  
CONE,<cone_name>,<rad_1>,<rad_2>  
/COORDCONE=(<cl_pnt_1>,<cl_pnt_2>);  
<cone_name> is the name of the cone and will be assigned the type CONE_3D. The maximum 
length of <cone_name> is 32 characters.  
<rad_1> and <rad_2> are the radii of the bottom and top circles respectively with type 
DECIMAL.  

COORDCONE=(<cl_pnt_1>,<cl_pnt_2>)  
<cl_pnt_1> and <cl_pnt_2> are the centre line starting and ending points, respectively. 
They have the type POINT_3D.  

Structure: 

The CONNECTIONPOINT Statement  
CONNECTIONPOINT,<conn_name>,<conn_type>,<conn_no>,  
<conn_pnt>,<conn_vect>,<conn_desc>;  
<conn_name> is the name of the connection point and will be assigned the type 
CONNECTIONPOINT_3D. The maximum length of <conn_name> is 32 characters.  
<conn_type> is the connection type of type INTEGER. Only types between 1 and 9 are valid.  
<conn_no> is the connection number of type INTEGER. Only numbers between 1 and 199 are 
valid.  
<conn_pnt> is the connection point defining the position. It has the type POINT_3D.  
<conn_vect> is the connection vector defining the direction. It has the type VECTOR_3D.  
<conn_desc> is the connection description of type STRING. Maximum length of <conn_desc> 
is 100 characters.  

Structure: 

GET/STRUCTURE=(N,<circ_name>,'NSEG') 
/STRUCTURE=(X,<circ_name>,'ENDPNT',N,1) 
/STRUCTURE=(Y,<circ_name>,'AMPLITUDE',2,'Y'); 

PNT(1:3) (POINT_3D)  
VEC(1:3) (VECTOR_3D)  
BASE (DECIMAL)  
TOP (DECIMAL)  

Example:  
GET/STRUCTURE=(X,<cone_name>,'PNT',1) 
/STRUCTURE=(Z,<cone_name>,'VEC',3) 
/STRUCTURE=(R1,<cone_name>,'BASE') 
/STRUCTURE=(R2,<cone_name>,'TOP'); 



The CONTOUR Statement  
CONTOUR,<cnt_name>[,<start_pnt>] 
[/ARC=<arc_name>] 
[/ARCMIDPNT=(<mid_pnt>,<end_pnt>)] 
[/ARCRADIUS=(<end_pnt,<rad>)] 
[/ARCAMPLITUDE=(<end_pnt,<ampl>)] 
[/CONTOUR=<cnt_name>] 
[/LINE=<line_name>] 
[/LINEEND=<end_pnt>] 
[/LINEANGLE=(<len>,<ang>)] 
[/LINEOFFS=<offs>] 
[/SPLINE=<spl_name>]; 

<cnt_name> is the name of the contour and will be assigned the type CONTOUR_2D. The 
maximum length of <cnt_name> is 32 characters.  
<start_pnt> is the starting point of the contour with type POINT_2D. 
If /ARC, /CONTOUR, /LINE or /SPLINE is used for the first segment of the contour, then 
<start_pnt> shall be omitted.  

ARC=<arc_name>  
<arc_name> is the name of the arc and has the type ARC_2D. If <arc_name> is not the first 
segment in the contour, the starting point of <arc_name> will be ignored. No check is made 
whether this point coincides with the ending point of the previous segment or not.  

ARCMIDPNT=(<mid_pnt>,<end_pnt>)  
<mid_pnt> and <end_pnt> are the mid and ending points of the arc. They have the type 
POINT_2D. The starting point is defined by <start_pnt> or by the ending point of the 
previous segment.  

ARCRADIUS=(<end_pnt>,<rad>)  
<end_pnt> is the ending point of the arc with the type POINT_2D. The starting point is defined 
by <start_pnt> or by the ending point of the previous segment.  
<rad> is the arc radius when the arc is defined by giving two points + radius. It has the type 
DECIMAL.  

ARCAMPLITUDE=(<end_pnt,<ampl>)  
<end_pnt> is the ending point of the arc with the type POINT_2D. The starting point is defined 
by <start_pnt> or by the ending point of the previous segment.  
<ampl> is the arc amplitude when the arc is defined by giving two points + amplitude. It has 
the type DECIMAL.  

CONTOUR=<cnt_name>  
<cnt_name> is the name of the contour and has the type CONTOUR_2D. If <cnt_name> is not 

CONTYPE (INTEGER)  
CONNUMBER (INTEGER)  
PNT(1:3) (DECIMAL)  
VEC(1:3) (DECIMAL)  
DESCR (STRING)  

Example:  
GET/STRUCTURE=(T,<conn_name>,'CONTYPE') 
/STRUCTURE=(N,<conn_name>,'CONNUMBER') 
/STRUCTURE=(X,<conn_name>,'PNT',1) 
/STRUCTURE=(Y,<conn_name>,'VEC','Z') 
/STRUCTURE=(D,<conn_name>,'DESCR'); 



the first segment in the contour, the starting point of <cnt_name> will be ignored. No check is 
made whether this point coincides with the ending point of the previous segment.  

LINE=<line_name>  
<line_name> is the name of the line and has the type LINE_2D. If <line_name> is not the 
first segment in the contour the starting point of <line_name> will be ignored. No check is 
made whether this point coincides with the ending point of the previous segment or not.  

LINEEND=<end_pnt>  
<end_pnt> is the ending point of the line with the type POINT_2D. The starting point is 
defined by <start_pnt> or by the ending point of the previous segment.  

LINEANGLE=(<len>,<ang>)  
<len> is the length of the line and <ang> is the angle of the line, both with type DECIMAL. 
The starting point is defined by <start_pnt> or by the ending point of the previous segment.  

LINEOFFS=<offs>  
<offs> is the offset from the current point. It has the type STRING with at most 72 characters. 
The following formats are valid:  
du, dv (e.g. 100,50) or  
length, angle (e.g. 100,45D) or  
length, verbal direction (e.g. 100,N).  
Verbal directions can be North, South, West, East, Right, Left, Up or Down. Only the first letter 
is relevant. If the string ends with a 'U' or a 'V', the u axis or the v axis will be locked. Angles 
must be followed by D (degrees) or R (radians).  
The strings must only contain digits, a '-' or a '.'. '-' is only valid in the first position. Between the 
strings, it is allowed to have a couple of ' ' and ',' but at least one, either a ' ' or a ','. If one of the 
letters mentioned above is at a valid position, the rest of the string is ignored. Spaces in the 
beginning or the end of the string are removed.  

SPLINE=<spl_name>  
<spl_name> is the name of the spline and has the type SPLINE_2D. If <spl_name> is not 
the first segment in the contour, the starting point of <spl_name> will be ignored. No check is 
made whether this point coincides with the ending point of the previous segment or not.  

Structure: 

The CURRENT Statement  
CURRENT[/SUBPICTURE=(<view_name>,<subview_name>)  
[/VIEWSCALE=<view_scl>]]  
[/SUBVOLUME=<subvol_no>];  
SUBPICTURE=(<view_name>,<subview_name>)  
[/VIEWSCALE=<view_scl>]  
<view_name> is the name of the view. It has the type STRING. The maximum length of 
<view_name> is 26 characters. If <view_name> does not exist a new view and a new subview 
are created. The subview will get the name <subview_name>.  
<subview_name> is the name of the subview. It has the type STRING. The maximum length of 
<subview_name> is 26 characters. If <subview_name> does not exist a new subview is 
created.  

NSEG (INTEGER)  
SEGPARTS(1:NSEG) 

ENDPNT(1:2) (DECIMAL)  
AMPLITUDE(1:2) (DECIMAL)  

Example:  
GET/STRUCTURE=(N,<cnt_name>,'NSEG') 
/STRUCTURE=(X,<cnt_name>,'ENDPNT',N,1) 
/STRUCTURE=(Y,<cnt_name>,'AMPLITUDE',2,'Y'); 



<view_scl> is the scale to be used when a new view is created. It has the type DECIMAL. If this 
attribute is not given then the view scale will be the same as the drawing scale (given in the NAME 
statement).  
A new component is always created when a macro is run. This is the case even if the CURRENT 
statement is not present.  

SUBVOLUME=<subvol_no>  
<subvol_no> is the number of the subvolume. It has the type INTEGER. If <subvol_no> 
does not exist it is created.  

The CYLINDER Statement  
CYLINDER,<cyl_name>,<rad>  
/COORDCYL=(<cl_pnt_1>,<cl_pnt_2>;  
<cyl_name> is the name of the cylinder and will be assigned the type CYLINDER_3D. The 
maximum length of <cyl_name> is 32 characters.  
<rad> is the radius of the cylinder with type DECIMAL.  

COORDCYL=(<cl_pnt_1>,<cl_pnt_2>)  
<cl_pnt_1> and <cl_pnt_2> are the centre line starting and ending points, respectively. 
They have the type POINT_3D.  

Structure: 

The DECLARE Statement  
DECLARE,<variable>,<type>;  
<variable> is the name of the variable whose type is to be declared. The maximum length of 
<variable> is 32 characters.  
<type> is the type of <variable>. It has the type STRING and the whole type name must be 
given. The following types are available:  
INTEGER  
DECIMAL  
STRING  
POINT_2D  
LINE_2D  
ARC_2D  
CONTOUR_2D  
CIRCLE_2D  
VECTOR_2D  
SPLINE_2D  
TEXTFILE_2D  
TEXT_2D  
SYMBOL_2D  
NOTE_2D  
HATCH_2D  

PNT(1:3) (DECIMAL)  
VEC(1:3) (DECIMAL)  
BASE (DECIMAL)  

Example:  
GET/STRUCTURE=(X,<cyl_name>,'PNT',1) 
/STRUCTURE=(Y,<cyl_name>,'VEC','Y') 
/STRUCTURE=(R,<cyl_name>,'BASE'); 



EXTRACT  
RANGE  
TABLE  
POINT_3D  
VECTOR_3D  
CONNECTIONPOINT_3D  
CONE_3D  
CYLINDER_3D  
GENERALCYLINDER_3D  
PARALLELEPIPED_3D  
POLYGON_3D  
SPHERESEG_3D  
TOROID_3D  
ROTATIONAL_3D  
The default type is DECIMAL.  

The DELAY Statement  
DELAY,<del_time>;  
<del_time> is the delay time in seconds. It has the type DECIMAL.  

The DISTANCE Statement  
DISTANCE,<variable_1>,<variable_2>  
<variable_1> is assigned the same value as <variable_2> and will get the same type as the 
first one. The maximum length of <variable_1> and <variable_2> is 32 characters. 
<variable_2> can be an expression, an integer constant or a decimal constant.  
When the DISTANCE statement is used <variable_1> will be scaled with the current scale. This 
is not the case when the ASSIGN statement is used.  

The DRAWING_NAME Statement  
DRAWING_NAME, <name_drawing>;  
This statement assigns the name of current drawing to <name_drawing> which is a string 
parameter. If there is no current drawing, the statement prompts the user to supply the name as 
text either in input window or on terminal.  

The ELSE Statement  
ELSE;  
This statement must be used together with the IF statement.  

The ENDIF Statement  
ENDIF;  
The ENDIF statement terminates the IF statement.  

The ENDLOOP Statement  
ENDLOOP;  
The ENDLOOP statement terminates the LOOP statement.  

The ENDMACRO Statement  
ENDMACRO;  
The ENDMACRO statement terminates the MACRO statement.  



The ENDWHILE Statement  
ENDWHILE;  
The ENDWHILE statement terminates the WHILE statement.  

The EXTRACTION Statement (OPTIONAL)  
EXTRACTION,<dex_name>,<dex_str>;  
<dex_name> is the name of the data extraction variable and has the type EXTRACT. The 
maximum length of <dex_name> is 32 characters.  
<dex_str> is the data extraction string and has the type STRING. For further information, see 
documentation in Tribon User's Guide Data Extraction.  

The GENERALCYLINDER Statement  
GENERALCYLINDER,<gencyl_name>,<cnt_name>,<thick>, <pnt_1>,<pnt_2>,<pnt_3>;  
<gencyl_name> is the name of the general cylinder and will be assigned the type 
GENERALCYLINDER_3D. The maximum length of <gencyl_name> is 32 characters.  
<cnt_name> is the name of a 2D contour (with type CONTOUR_2D) which has previously been 
defined.  
<thick> is the thickness of the general cylinder and has the type DECIMAL.  
<pnt_1> is the origin of the general cylinder.  
<pnt_2> and <pnt_3> defines together with <pnt_1> the orientation in space. The u vector is 
given by <pnt_2> and <pnt_1> and the v vector by <pnt_3> and <pnt_1>.  
<pnt_1>, <pnt_2> and <pnt_3> all have the type POINT_3D.  

Structure: 

The GET Statement  
GET  
[/INTEGER=(<prompt>,<int>)]  
[/DECIMAL=(<prompt>,<dec>)]  
[/STRING=(<prompt>,<str>)]  
[/DISTANCE=(<prompt>,<dist>)]  
[/POINT_2D=(<prompt>,<pnt>)]  
[/POINT_3D=(<prompt>,<pnt>)]  
[/EXTRACT=(<variable>,<status>,<dex_name>,<arg_1>  
[,<arg_2]...[,<arg_10>]..]])]  

PNT(1:3) (DECIMAL)  
UVEC(1:3) (DECIMAL)  
VVEC(1:3) (DECIMAL)  
THICK (DECIMAL)  
NSEG (INTEGER)  
SEGPARTS(1:NSEG) 

ENDPNT(1:2) (DECIMAL)  
AMPLITUDE(1:2) (DECIMAL)  

Example: )  
GET/STRUCTURE=(PX,<gencyl_name>,'PNT',1 
/STRUCTURE=(N,<gencyl_name>,'NSEG') 
/STRUCTURE=(X,<gencyl_name>,'ENDPNT',N,1) 
/STRUCTURE=(Y,<gencyl_name>,'AMPLITUDE',2,'Y'); 



[/RANGE=(<rng_name>,<status>,<dex_name>[,<arg_1>  
[,<arg_2]...[,<arg_10>]..]])]  
[/STRUCTURE=(<variable>,<struct_name>,<arg_1>  
[,<arg_2]...[,<arg_10>]..]])];  
[/MODEL_NAME=(<prompt>, <status>, <name_model>, <name_component>)];  

[/VIEW_ID=(<prompt>, <get_viewid>)];  
<prompt> is a text displayed at the workstation before entering any values. It has the type 
STRING and the maximum length is 100 characters. <prompt> has the same meaning for the 
following attributes to the GET statement.  

INTEGER=(<prompt>,<int>)  
<int> is the integer value which has been given as input at the workstation.  

DECIMAL=(<prompt>,<dec>)  
<dec> is the decimal value which has been given as input at the workstation.  

STRING=(<prompt>,<str>)  
<str> is the string value which has been given as input at the workstation.  

DISTANCE=(<prompt>,<dist>)  
<dist> is a distance which has been given as input at the workstation. By default, the <dist> 
is given as the distance between two cursor positions (or any other point mode) but it is 
possible to key in <dist> by answering REJECT at the first cursor position. <dist> has the 
type DECIMAL.  
It is important to use DISTANCE and not DECIMAL when a distance is wanted, because the 
current scale is taken care of in DISTANCE but not in DECIMAL.  

POINT_2D=(<prompt>,<pnt>)  
<pnt> is a point which has been given as input at the workstation. The default point mode is 
cursor position but it is possible to use any of the other available modes. <pnt> has the type 
POINT_2D.  

POINT_3D=(<prompt>,<pnt>)  
<pnt> is a point which has been given as input at the workstation. The default point mode is 
cursor position but it is possible to use any of the other available modes. <pnt> has the type 
POINT_3D.  

EXTRACT=(<variable>,<status>,<dex_name>,<arg_1>[,<arg_2>]... [,<arg_10>]..]]) 
Optional function.  
<variable> is the name of the variable to be assigned. It can have the type INTEGER, 
DECIMAL or STRING. The maximum length of <variable> is 32 characters.  
<status> is a variable giving the status of <variable>. It can have the following INTEGER 
values:  
0<variable> not defined  
1<variable> defined  
Before using <variable>, there must always be a test on <status> to ensure that 
<variable> is defined. Otherwise the macro will be aborted.  
<dex_name> is the name of the data extraction variable and has the type EXTRACT. The 
maximum length of <dex_name> is 32 characters.  
<arg_1>[,<arg_2>]...[,<arg_10>]..]] are the arguments corresponding to the data 
extraction keywords, from the top level down to the bottom level. These arguments can have 
the type INTEGER, DECIMAL or STRING.  

RANGE=(<rng_name>,<status>,<dex_name>[,<arg_1>[,<arg_2>]... [,<arg_10>]..]]) 
Optional function.  
<rng_name> is the name of the range which was the result of the extraction. It has the type 
RANGE. The maximum length of <rng_name> is 32 characters. The range can for instance 
contain the resulting object names.  
<status> is a variable giving the status of <rng_name>. It can have the following INTEGER 
values:  



0<rng_name> not defined  
1<rng_name> defined  
Before using <rng_name>, there shall always be a test on <status> to ensure that 
<rng_name> is defined. Otherwise the macro will be aborted.  
<dex_name> is the name of the data extraction variable and has the type EXTRACT. The 
maximum length of <dex_name> is 32 characters.  
[,<arg_1>[,<arg_2>]...[,<arg_10>]..]] are the arguments corresponding to the 
data extraction keywords, from the top level down to the bottom level. These arguments can 
have the type INTEGER, DECIMAL or STRING.  

STRUCTURE=(<variable>,<struct_name>,<arg_1>  
[,<arg_2]...[,<arg_10>]..]])  
<variable> is the name of the variable to be assigned. It can have the type INTEGER, 
DECIMAL or STRING. The maximum length of <variable> is 32 characters.  
<struct_name> is the name of the structure from which the data shall be taken. It has the 
type STRING. The following structure types are available:  
POINT_2D  
LINE_2D  
ARC_2D  
CONTOUR_2D  
CIRCLE_2D  
VECTOR_2D  
SPLINE_2D  
TEXTFILE_2D  
TEXT_2D  
SYMBOL_2D  
NOTE_2D  
HATCH_2D  
POINT_3D  
VECTOR_3D  
CONNECTIONPOINT_3D  
CONE_3D  
CYLINDER_3D  
GENERALCYLINDER_3D  
PARALLELEPIPED_3D  
POLYGON_3D  
SPHERESEG_3D  
TOROID_3D  
ROTATIONAL_3D  
[<arg_1>[,<arg_2>]...[,<arg_10>]..]] are the arguments in the structure. It is thus 
possible for instance to get the end coordinates for the n:th segment in a certain contour or the 
total number of lines in the file used by the TEXTFILE statement.  
The arguments are described at the respective structure statement.  

MODEL_NAME=(<prompt>,<status>,<name_model>, <name_component>)  
<status> is a variable giving the status of <variable>. It can have the following INTEGER 
values:  
0<name_model> and <name_component> not defined  
1<name_model> defined, <name_component> not defined  
2<name_model> and <name_component> defined  
Before using either of <name_model> and <name_component>, there must always be a test 
on <status> to ensure that the variable about to be used is defined. Otherwise the macro will 
be aborted. Moreover, the variable must be declared by a DECLARE statement.  



<name_model> is a string assigned to by the statement. It is only valid if <status> = 1. The 
parameter has the name of the model indicated by user when the statement was executed.  
<name_component> is a string assigned to by the statement. It is only valid if <status> = 1. 
The parameter has the name of the model object component indicated by user when the 
statement was executed.  

VIEW_ID=(<prompt>,<get_viewid>)  
<get_viewid> is the ID of a view which has been given as input at the workstation. 
<get_viewid> has the type INTEGER.  

The HATCH Statement  
HATCH,<hatch_name>,<hatch_cnt>,<hatch_type>  
[/HATCHANGLE=<hatch_angle>]  
[/HATCHDISTANCE=<hatch_dist>]  
[/USERDEFINED=(<hatch_page>,<hatch_number>]  
[/ISLAND=<island_cnt>];  
<hatch_name> is the name of the hatch pattern and has the type HATCH_2D. The maximum 
length of <hatch_name> is 32 characters.  
<hatch_type> is the type of hatch pattern. It has the type INTEGER. The following types are 
available:  
1 normal, positive angle  
2 normal, negative angle  
3 cross-hatching  
4 user defined  

HATCHANGLE=<hatch_angle>  
<hatch_angle> is the angle of the hatch pattern lines. It has the type DECIMAL. The default 
angle is 60 degrees.  

HATCHDISTANCE=<hatch_dist>  
<hatch_dist> is the distance between the hatch pattern lines. It has the type DECIMAL. The 
default distance is 5 mm.  

USERDEFINED=<hatch_page>,<hatch_number>  
<hatch_page> is the page number (1-999) in the standard book for user defined hatch 
patterns. It has the type INTEGER.  
<hatch_number> is the standard number (1-8) within the page <hatch_page> in the 
standard book for user defined hatch patterns. It has the type INTEGER.  

/ISLAND=<island_cnt>  
<island_cnt> is the island contour where the hatch pattern shall be removed. It is of the type 
CONTOUR_2D or TEXT_2D.  

Structure: 

TYPE (INTEGER)  
ANGLE (DECIMAL)  
DISTANCE (DECIMAL)  
PAGE (INTEGER)  
NUMBER (INTEGER)  
NSEG (INTEGER)  
ISLANDS (INTEGER)  
SEGPARTS(1:NSEG) 

ENDPNT(1:2) (DECIMAL)  
AMPLITUDE(1:2) (DECIMAL)  

Example:  



The IF Statement  
IF,<cond>;  
<cond> is the condition to be tested. It has the type  
BOOLEAN.  

The LAYER Statement  
LAYER,<lay_no>;  
<lay_no> is the layer number (> 0) and must be given within ' ' if it is addressed with an alias 
name. If <lay_no> is a true number or a variable, it shall not be given within ' '. If <lay_no> 
refers to a layer class, it must be preceded by # and directly followed by the class number or the 
class name. In this case, <lay_no> shall be given within ' '.  
The maximum length of <lay_no> as an alias is 26 characters and as a variable 32 characters.  

The LINE Statement  
LINE,<line_name>,<stp_pnt>  
[/LINEEND=<end_pnt>]  
[/LINEANGLE=(<len>,<ang>)]  
[/LINEOFFS=<offs>];  
<line_name> is the name of the line and has the type LINE_2D. The maximum length of 
<line_name> is 32 characters.  
<stp_pnt> is the starting point of the line with the type POINT_2D.  

LINEEND=<end_pnt>  
<end_pnt> is the ending point of the line with the type POINT_2D.  

LINEANGLE=(<len>,<ang>)  
<len> is the length of the line and <ang> is the angle of the line, both with type DECIMAL.  

LINEOFFS=<offs>  
<offs> is the offset from the current point. It has the type STRING with at most 72 characters. 
The following formats are valid:  
du, dv (e.g. 100,50) or  
length, angle (e.g. 100,45D) or  
length, verbal direction (e.g. 100,N).  
Verbal directions can be North, South, West, East, Right, Left, Up or Down. Only the first letter 
is relevant. If the string ends with a 'U' or a 'V', the u axis or the v axis will be locked. Angles 
must be followed by D (degrees) or R (radians).  
The strings must only contain digits, a '-' or a '.'. '-' is only valid in the first position. Between the 
strings, it is allowed to have a couple of ' ' and ',' but at least one, either a ' ' or a ','. If one of the 
letters mentioned above is at a valid position, the rest of the string is ignored. Spaces in the 
beginning or the end of the string are removed.  

Structure: 

GET/STRUCTURE=(T,<hatch_name>,'TYPE' 
/STRUCTURE=(A,<hatch_name>,'ANGLE') 
/STRUCTURE=(D,<hatch_name>,'DISTANCE') 
/STRUCTURE=(P,<hatch_name>,'PAGE') 
/STRUCTURE=(M,<hatch_name>,'NUMBER') 
/STRUCTURE=(N,<hatch_name>,'NSEG') 
/STRUCTURE=(I,<hatch_name>,'ISLANDS') 
/STRUCTURE=(X,<hatch_name>,'ENDPNT',N,1) 
/STRUCTURE=(Y,<hatch_name>,'AMPLITUDE',2,'Y'); 



The LINETYPE Statement  
LINETYPE,<lin_type>  
[/LINEWIDTH=<lin_wid>];  
<lin_type> is the modal line type to be used. It has the type INTEGER. Default line type is 1 
(solid). The types 1 - 5 are available.  

LINEWIDTH=<lin_wid>  
<lin_wid> is the modal line width to be used. It has the type INTEGER. Default line width is 1 
(thin). The types 1 - 3 are available.  

The LOOP Statement  
LOOP,<loop_var>,<range>;  
<loop_var> is the loop variable and the type is dependent on how <range> is given.  
<range> can be given in three ways:  
<start_value> : <end_value>  
or  
<start_value> : <end_value> :: <step_value>  
or  
<range>  
where <range> has the type RANGE.  
In the to first cases <loop_var> can have the type INTEGER or DECIMAL. If <range> has the 
type RANGE then <loop_var> can also have type STRING.  
When <step_value> is omitted, it is by default put to 1.  
<start_value>, <end_value> and <step_value> have the type DECIMAL.  

The MACRO Statement  
MACRO,<macro_name>  
[,<arg_1>[,<arg_2>....[,<arg_25>]....]];  
<macro_name> is the name of the macro. The maximum length of <macro_name> is 32 
characters. Only upper case letters, digits and _ are allowed characters. <arg_1>,<arg_2>, 
....,<arg_25> are the arguments to the macro. They cannot be expressions but must be 
variables. All types given in the ASSIGN statement are allowed.  

The NAME Statement  
NAME,<dwg_name>  
[/DWG]  
[/FORM=<form_name>]  
[/PICT]  
[/SCALE=<dwg_scale>]  
[/VOLUME=(<xmax>,<ymax>)];  
<dwg_name> is the name of the drawing/subpicture/ volume to be created and stored on a data 
bank. If the NAME statement is omitted, <macro_name> will be used. <dwg_name> has the type 
STRING and the maximum length is 32 characters.  
If the drawing/subpicture/volume given by <dwg_name> already exists on the data bank, the 
geometry created by the macro will be added to the existing object.  

STARTPNT(1:2)  (DECIMAL)  
ENDPNT(1:2)  (DECIMAL)  

Example:  
GET/STRUCTURE=(X,<line_name>,'STARTPNT',1) 
/STRUCTURE=(Y,<line_name>,'ENDPNT','Y' 



DWG  
This attribute is used to specify that a drawing is to be created.  

FORM=<form_name>  
<form_name> is the name of the form to be used, if any. <form_name> has the type STRING 
and the maximum length is 32 characters.  

PICT  
This attribute is used to specify that a subpicture is to be created.  

SCALE=<dwg_scale>  
<dwg_scale> is the drawing/subpicture scale to be used. The default scale is 1:50. 
<dwg_scale> has the type DECIMAL.  

VOLUME=(<xmax>,<ymax>)  
<xmax> and <ymax> are the x and y extensions for the volume to be created. They have the 
type DECIMAL.  

The NOTE Statement  
NOTE,<note_name>,<start_pnt>,<ref_cnt>,<note_text>  
[/NOTESYMBOL=<note_symb>]  
[/REFSYMBOL=<ref_symb>];  
<note_name> is the name of the note and has the type NOTE_2D. The maximum length of 
<note_name> is 32 characters.  
<start_pnt> is the starting point of the reference lines of the note. It has the type POINT_2D.  
<ref_cnt> is the reference lines of the note. It has the type CONTOUR_2D. This contour must 
have been defined previously.  
<note_text> is the text in the note (with type TEXT_2D) which has previously been defined.  

NOTESYMBOL=<note_symb>  
<note_symb> is the number of the note symbol. It has the type INTEGER. The default note 
symbol is number 31.  

REFSYMBOL=<ref_symb>  
<ref_symb> is the number of the reference symbol. It has the type INTEGER. The default 
reference symbol is number 21.  

Structure: 

The PARALLELEPIPED Statement  

TEXT (STRING)  
NOTESYMB (INTEGER)  
REFSYMB (INTEGER)  
PNT(1:2) (DECIMAL)  
NSEG (INTEGER)  
SEGPARTS(1:NSEG) 

ENDPNT(1:2) (DECIMAL)  
AMPLITUDE(1:2) (DECIMAL)  

Example:  
GET/STRUCTURE=(NS,<note_name>,'NOTESYMB') 
/STRUCTURE=(RS,<note_name>,'REFSYMB') 
/STRUCTURE=(SX,<note_name>,'PNT',1) 
/STRUCTURE=(N,<note_name>,'NSEG') 
/STRUCTURE=(X,<note_name>,'ENDPNT',N,1) 
/STRUCTURE=(Y,<note_name>,'AMPLITUDE',2,'Y'); 



PARALLELEPIPED,<para_name>  
[/COORDPARA=(<corn_1>,<corn_2>,<corn_3>)]  
[/CENLINPARA=(<cl_pnt_1>,<cl_pnt_2>,<corn>)];  
<para_name> is the name of the parallelepiped and has the type PARALLELEPIPED_3D. The 
maximum length of <para_name> is 32 characters.  

COORDPARA=(<corn_1>,<corn_2>,<corn_3>)  
<corn_1> is the origin of the parallelepiped and the lower right corner when looking in the 
direction of the centre line. <corn_2> is the upper right corner at the end surface when looking 
in the same direction. <corn_3> is then, in the same way, the upper left corner at the end 
surface.  
<corn_1>, <corn_2> and <corn_3> all have the type POINT_3D.  

COORDPARA=(<cl_pnt_1>,<cl_pnt_2>,<corn>)  
<cl_pnt_1> is the starting point of the centre line and <cl_pnt_2> is the ending point of the 
centre line.  
<corn> is the upper left corner at the end surface when looking in the direction of the centre 
line.  
<cl_pnt_1>, <cl_pnt_2> and <corn> all have the type POINT_3D.  

Structure: 

The POINT_2D Statement  
POINT_2D,<pnt_name>,<x>,<y>;  
<pnt_name> is the name of the point and has the type POINT_2D. The maximum length of 
<pnt_name> is 32 characters.  
<x> and <y> are the x and y coordinates of the point, both with type DECIMAL.  
If only one of the coordinates of a previously defined point are to be changed, the other one is 
simply omitted.  

Structure: 

The POINT_3D Statement  
POINT_3D,<pnt_name>,<x>,<y>,<z>;  
<pnt_name> is the name of the point and has the type POINT_3D. The maximum length of 
<pnt_name> is 32 characters.  
<x>, <y> and <z> are the x, y and z coordinates of the point, all with type DECIMAL.  

PNT(1:3) (DECIMAL)  
UVEC(1:3) (DECIMAL)  
VVEC(1:3) (DECIMAL)  
LENGTH (DECIMAL)  

Example:  
GET/STRUCTURE=(X,<para_name>,'PNT',1) 
/STRUCTURE=(Y,<para_name>,'UVEC',2) 
/STRUCTURE=(Z,<para_name>,'VVEC','Z') 
/STRUCTURE=(L,<para_name>,'LENGTH'); 

PNT(1:2) (DECIMAL)  

Example:  
GET/STRUCTURE=(X,<pnt_name>,'PNT',1) 
/STRUCTURE=(Y,<pnt_name>,'PNT','Y'); 



If only one of the coordinates of a previously defined point shall be changed, the others are simply 
omitted.  

Structure: 

The POLYGON Statement  
POLYGON,<pol_name>,<stp_pnt>  
/LINEPOLYGON=<end_pnt>....;  
<pol_name> is the name of the polygon and has the type POLYGON_3D. The maximum length of 
<pol_name> is 32 characters.  
<stp_pnt> is the starting point of the polygon with the type POINT_3D.  

LINEPOLYGON=<end_pnt>....  
<end_pnt> is the ending point of the polygon segment with the type POINT_3D.  

Structure: 

The PRESENT Statement  
PRESENT,<var_name>;  
<var_name> is the name of the variable which is to be presented. It can have any of the following 
types:  
POINT_2D  
LINE_2D  
ARC_2D  
CIRCLE_2D  
CONTOUR_2D  
SPLINE_2D  
SYMBOL_2D  
TEXT_2D  
TEXTFILE_2D  
NOTE_2D  
TABLE  
CONNECTIONPOINT_3D  
CONE_3D  
CYLINDER_3D  

PNT(1:3) (DECIMAL)  

Example:  
GET/STRUCTURE=(X,<pnt_name>,'PNT','X') 
/STRUCTURE=(Y,<pnt_name>,'PNT',2) 
/STRUCTURE=(Z,<pnt_name>,'PNT','Z'); 

NSEG (INTEGER)  
SEGPARTS(1:NSEG) 

ENDPNT(1:3) (DECIMAL)  
AMPLITUDE(1:3) (DECIMAL)  

Example:  
GET/STRUCTURE=(N,<pol_name>,'NSEG') 
/STRUCTURE=(X,<pol_name>,'ENDPNT',N,1) 
/STRUCTURE=(Y,<pol_name>,'AMPLITUDE',2,'Y'); 



PARALLELEPIPED_3D  
POLYGON_3D  
ROTATIONAL_3D  
TOROID_3D  
SPHERESEG_3D  
GENERALCYLINDER_3D  
The maximum length of <var_name> is 32 characters.  

The PUT Statement  
PUT,<var_name>;  
<var_name> is the name of the variable which contents is to be written. It can have any type. The 
maximum length of <var_name> is 32 characters.  

The RANGE Statement  
RANGE,<rng_name>  
[/FILENAME=<file_name>];  
<rng_name> is the name of the range and has the type RANGE. The maximum length of 
<rng_name> is 32 characters.  

FILENAME=<file_name>  
<file_name> is the file where the range is stored. It has the type STRING. The file contains a 
number of integer numbers OR decimal numbers OR strings, one on each line.  

The ROTATIONAL Statement  
ROTATIONAL,<rot_name>,<cnt_name>,<pnt>,<vec>;  
<rot_name> is the name of the rotational primitive and will be assigned the type 
ROTATIONAL_3D. The maximum length of <rot_name> is 32 characters.  
<cnt_name> is the name of a 2D contour (with type CONTOUR_2D) which has previously been 
defined.  
<pnt> is the origin of the 2D contour in space. It has the type POINT_3D.  
<vec> is the vector around which <cnt_name> is rotated. It has the type VECTOR_3D.  

Structure: 

The SPHERESEG Statement  
SPHERESEG,<seg_name>,<rad>  
/COORDSEG=(<cl_pnt_1>,cl_pnt_2>);  
<seg_name> is the name of the spherical segment and has the type SPHERESEG_3D. The 
maximum length of <seg_name> is 32 characters.  
<rad> is the radius of the spherical segment. It has the type DECIMAL.  

PNT(1:3) (DECIMAL)  
VEC(1:3) (DECIMAL)  
NSEG (INTEGER)  
SEGPARTS(1:NSEG) 

ENDPNT(1:2) (DECIMAL)  
AMPLITUDE(1:2) (DECIMAL)  

Example:  
GET/STRUCTURE=(X,<rot_name>,'PNT',1) 
/STRUCTURE=(N,<rot_name>,'NSEG') 
/STRUCTURE=(Y,<rot_name>,'AMPLITUDE',N,'Y'); 



COORDSEG=(<cl_pnt_1>,<cl_pnt_2>)  
<cl_pnt_1> is the starting point and <cl_pnt_2> is the ending point of the centre line, both 
with the type POINT_3D.  

Structure: 

The SPLINE Statement  
SPLINE,<spl_name>  
[/SPLPNT=<spl_pnt>]  
[/SPLTAN=(<spl_pnt>,<tang_ang>)];  
<spl_name> is the name of the spline and has the type SPLINE_2D. The maximum length of 
<spl_name> is 32 characters.  
It is possible to define the spline with or without tangent conditions in the points in the following 
way:  
1)no tangent condition  
2)tangent condition in the start point  
3)tangent condition in the end point  
4)tangent conditions in both start and end point  
5)tangent conditions in all points  

SPLPNT=<spl_pnt>  
<spl_pnt> is the spline point with type POINT_2D. It is used when no tangent condition is 
wanted.  

SPLTAN=(<spl_pnt>,<tang_ang>)  
<spl_pnt> is the spline point with type POINT_2D.  
<tang_ang> is the tangent angle to be used in 2) - 5) above. It has the type DECIMAL.  

Structure: 

The SPLIT Statement  
SPLIT,<model_name>,<delimiter>,<project>,<module>, 
<subsyst_1>,<subsyst_2>,<subsyst_3>;  
<model_name> is the name of the model. It has the type STRING. The maximum length of <col> 
is 26 characters.  

PNT(1:3) (DECIMAL)  
UVEC(1:3) (DECIMAL)  
RADIUS (DECIMAL)  

Example:  
GET/STRUCTURE=(X,<seg_name>,'PNT',1) 
/STRUCTURE=(Z,<seg_name>,'UVEC',3) 
/STRUCTURE=(R,<seg_name>,'RADIUS'); 

NSEG (INTEGER)  
SEGPARTS(1:NSEG) 

PNT(1:2) (DECIMAL)  
VEC(1:2) (DECIMAL)  

Example: )  
GET/STRUCTURE=(N,<spl_name>,'NSEG' 
/STRUCTURE=(X,<spl_name>,'PNT',N,1) 
/STRUCTURE=(Y,<spl_name>,'VEC',N,2); 



<delimiter> is the character which is used to separate the different parts of <model_name>. It 
has the type STRING.  
<project> is the project of <model_name> and has the type STRING.  
<module> is the module of <model_name> and has the type STRING.  
<subsyst_1> is the first subsystem of <model_name> and has the type STRING.  
<subsyst_2> is the second subsystem of <model_name> and has the type STRING.  
<subsyst-3> is the third subsystem of <model_name> and has the type STRING.  
All three subsystems need not be present in the model name. How many subsystems that exist 
depends on the application.  

The SYMBOL Statement  
SYMBOL,<symb_name>,<symb_no>,<symb_pnt>,<symb_ang>  
[/MIRRORX]  
[/MIRRORY]  
[/SYMBFONT=<symb_fnt>]  
[/SYMBHEIGHT=<symb_hgt>]  
[/SYMBWIDTH=<symb_wid>]  
[/AUTOOFF];  
<symb_name> is the name of the symbol and has the type SYMBOL_2D. The maximum length of 
<symb_name> is 32 characters.  
<symb_no> is the number of the symbol. It has the type INTEGER.  
<symb_pnt> is the origin of the symbol and has the type POINT_2D.  
<symb_ang> is the symbol angle which is of type DECIMAL.  

MIRRORX  
With this attribute, it is possible to reflect the symbol in the x axis. It cannot be used together 
with MIRRORY.  

MIRRORY  
With this attribute it is possible to reflect the symbol in the y axis. It cannot be used together 
with MIRRORX.  

SYMBFONT=<symb_fnt>  
<symb_fnt> is the symbol font and has the type INTEGER. The default font is the system font 
number 21.  

SYMBHEIGHT=<symb_hgt>  
<symb_hgt> is the symbol height and has the type DECIMAL. The symbol is given a default 
height value and the symbol height can be changed with this attribute.  

SYMBWIDTH=<symb_wid>  
<symb_wid> is the symbol width and has the type DECIMAL. The symbol is given a default 
width value but the symbol width can be changed with this attribute.  

AUTOOFF  
With this attribute it is possible to switch off the default automatic positioning of the symbol.  

Structure: 

SYMBNO (INTEGER)  
PNT(1:2) (DECIMAL)  
ANGLE (DECIMAL)  
FONTNO (INTEGER)  
WIDTH (DECIMAL)  
HEIGHT (DECIMAL)  
MIRR (INTEGER)  
AUTO (INTEGER)  



The TABLE Statement  
TABLE,<tab_name>  
[/ARGUMENTS=([<arg_1>[,<arg_2>....[,<arg_15>]....]])]  
[/FORMAT=([<width_1>,<ndec_1>[,<width_2>,ndec_2>....  
[,<width_15>,<ndec_15>]....]])]  
[/FILENAME=<file_name>]  
[/QUOTES]  
[/NOAPPEND];  
<tab_name> is the name of the table and has the type TABLE. The maximum length of 
<tab_name> is 32 characters.  

ARGUMENTS=([<arg_1>[,<arg_2>.... [,<arg_15>]....]])  
<arg_1>,<arg_2>, ....,<arg_25> are the arguments to be put in the table. They can 
have the type INTEGER, DECIMAL or STRING.  

FORMAT=([<width_1>,<ndec_1>[,<width_2>,<ndec_2>.... [,<width_15>,<ndec_15>]....]])  
This attribute describes the format of the table. <width_1>,<width_2>, ...,<width_15> 
is the width of the column for the i:th argument. It has the type integer. The default width is 8 
which will be the result if FORMAT is not given or if the width for a variable is omitted (i.e. given 
as ,,). If the width is negative the result will be positioned left-justified, otherwise right-justified.  
<ndec_1>,<ndec_2>, ...,<ndec_15> is the number of decimals for the i:th argument. It 
has the type integer. The default number of decimals is 3 which will be the result if FORMAT is 
not given. It is of course only necessary to give the number of decimals for arguments of type 
DECIMAL. In other cases it can be omitted (i.e. given as ,,) or given as 0.  
The attributes ARGUMENTS and FORMAT must be given together and with the same number 
of parameters.  

FILENAME=<file_name>  
<file_name> is the file where the table will be presented when the PRESENT statement is 
used. It has the type STRING.  

QUOTES  
When this attribute is given in the TABLE statement all terms will be surrounded by ' '. The 
resulting file can then directly be used as input to the Tribon Report Generator.  

NOAPPEND  
When this attribute is given in the TABLE statement the old contents in <tab_name> will be 
deleted and the <tab_name> can be used for another table. The attribute must also be given 
the first time <tab_name> is used.  

The TEXT Statement  
TEXT,<txt_name>,<txt_pnt>  
[/TEXTLINE=<txt_str>]  
[/TEXTDECNO=<txt_dec>]  
[/TEXTINTNO=<txt_int>]  
[/TEXTANGLE=<txt_ang>]  

Example:  
GET/STRUCTURE=(S,<symb_name>,'SYMBNO') 
/STRUCTURE=(X,<symb_name>,'PNT',1) 
/STRUCTURE=(A,<symb_name>,'ANGLE') 
/STRUCTURE=(F,<symb_name>,'FONTNO') 
/STRUCTURE=(W,<symb_name>,'WIDTH') 
/STRUCTURE=(H,<symb_name>,'HEIGHT') 
/STRUCTURE=(M,<symb_name>,'MIRR') 
/STRUCTURE=(A,<symb_name>,'AUTO'); 



[/TEXTHEIGHT=<txt_hgt>]  
[/TEXTFONT=<txt_fnt>];  
<txt_name> is the name of the text line and has the type TEXT_2D. The maximum length of 
<txt_name> is 32 characters.  
<txt_pnt> is the text origin which is the lower left corner of the text. It has the type POINT_2D.  

TEXTDECNO=<txt_dec>  
<txt_dec> is a number which shall be presented as a text. It has the type DECIMAL.  

TEXTINTNO=<txt_int>  
<txt_int> is a number which will be presented as a text. It has the type INTEGER.  

TEXTLINE=<txt_str>  
<txt_str> is a string which will be presented as a text. It has the type STRING.  

TEXTANGLE=<txt_ang>  
<txt_ang> is the text angle and has the type DECIMAL. The default angle is 0.0 but the text 
angle can be changed with this attribute.  

TEXTHEIGHT=<txt_hgt>  
<txt_hgt> is the text height and has the type DECIMAL. The text is given a default height 
value but the text height can be changed with this attribute.  

TEXTFONT=<txt_fnt>  
<txt_fnt> is the text font and has the type INTEGER. Available font numbers are 0-99. The 
default font number is 0.  

Structure: 

The TEXTFILE Statement  
TEXTFILE,<txf_name>,<file_name>  
[/INTERLINESPACE=<intlin_space>]  
[/POSLINES=(<start_pnt>,<first_line>,<last_line>)]  
[/TEXTANGLE=<text_ang>]  
[/TEXTHEIGHT=<text_hgt>]  
[/TEXTFONT=<text_fnt>];  
<txf_name> is the name of the text file variable and has the type TEXTFILE_2D. The maximum 
length of <txf_name> is 32 characters.  
<file_name> is the name of the file from where the text is fetched. It has the type STRING.  

INTERLINESPACE=<intlin_space>  
<intlin_space> is the factor for the interline space. The interline space is defined as the 
factor * the text height. It has the type DECIMAL. The default factor is 1.5.  

POSLINES=(<start_pnt>,<first_line>,<last_line>)  
<start_pnt> is the origin of the first text line and the lower left corner of that line. It has the 
type POINT_2D.  
<first_line> is the number of the first line to be presented. It has the type INTEGER.  

TEXT (STRING)  
PNT(1:2) (DECIMAL)  
ANGLE (DECIMAL)  
HEIGHT (DECIMAL)  

Example:  
GET/STRUCTURE=(T,<txt_name>,'TEXT' 
/STRUCTURE=(X,<txt_name>,'PNT',1) 
/STRUCTURE=(A,<txt_name>,'ANGLE') 
/STRUCTURE=(H,<txt_name>,'HEIGHT'); 



<last_line> is the number of the last line to be presented. It has the type INTEGER.  

TEXTANGLE=<text_ang>  
<text_ang> is the text angle and has the type DECIMAL. The default angle is 0.0 but the text 
angle can be changed with this attribute.  

TEXTHEIGHT=<text_hgt>  
<text_hgt> is the next height and has the type DECIMAL. The text is given a default height 
value but the text height can be changed with this attribute.  

TEXTFONT=<text_fnt>  
<text_fnt> is the text font and has the type INTEGER. Available font numbers are 0-99. The 
default font number is 0.  
It is possible to give both absolute and relative values of the lines to be presented. This is 
illustrated by the following examples:  
/POSLINES=(P1,1,15) lines 1 to 15  
/POSLINES=(P1,10,) next 10 lines (16 to 25)  
/POSLINES=(P1,20,) next 20 lines (26 to 45)  
/POSLINES=(P1,,10) previous 10 lines (16 to 25)  
/POSLINES=(P1,,) the whole file  

Structure: 

The TOROID Statement  
TOROID,<tor_name>,<rad>  
/COORDTOR=(<cl_pnt_1>,cl_pnt_2>,<cl_pnt_3>);  
<tor_name> is the name of the toroid and has the type TOROID_3D. The maximum length of 
<tor_name> is 32 characters.  
<rad> is the radius of the toroid. It has the type DECIMAL.  

/COORDTOR=(<cl_pnt_1>,cl_pnt_2>,<cl_pnt_3>);  
<cl_pnt_1> is the starting point, <cl_pnt_2> is the mid point and <cl_pnt_3> is the 
ending point of the toroid centre line. All have the type POINT_3D.  

Structure: 

FILENAME (STRING)  
ANGLE (DECIMAL)  
HEIGHT (DECIMAL)  
ILSP (DECIMAL)  
NDATA (INTEGER)  
DATA(1:NDATA) 

PNT(1:2) (DECIMAL)  
FIRST (INTEGER)  
LAST (INTEGER)  

Example:  
GET/STRUCTURE=(F,<txf_name>,'FILENAME' 
/STRUCTURE=(A,<txf_name>,'ANGLE') 
/STRUCTURE=(H,<txf_name>,'HEIGHT') 
/STRUCTURE=(I,<txf_name>,'ILSP') 
/STRUCTURE=(N,<txf_name>,'NDATA') 
/STRUCTURE=(X,<txf_name>,'PNT',N,1) 
/STRUCTURE=(S,<txf_name>,'FIRST',N) 
/STRUCTURE=(E,<txf_name>,'LAST',N); 



The VECTOR_2D Statement  
VECTOR_2D,<vect_name>,<x>,<y>;  
<vect_name> is the name of the vector and has the type VECTOR_2D. The maximum length of 
<vect_name> is 32 characters.  
<x> and <y> are the x and y coordinates of the vector, both with type DECIMAL.  
If only one of the coordinates of a previously defined point shall be changed, the other one is 
simply omitted.  

Structure: 

The VECTOR_3D Statement  
VECTOR_3D,<vect_name>,<x>,<y>,<z>;  
<vect_name> is the name of the vector and has the type VECTOR_3D. The maximum length of 
<vect_name> is 32 characters.  
<x>, <y> and <z> are the x, y and z coordinates of the vector, all with type DECIMAL.  
If only one of the coordinates of a previously defined point shall be changed, the others are simply 
omitted.  

Structure: 

The VMSJOB Statement  
VMSJOB,<jobfilename>;  
The parameter <jobfilename> is the name of the file to be executed. It has the type STRING. 
The maximum length of <jobfilename> is 100 characters.  

The WHILE Statement  
WHILE,<cond>;  
<cond> is the condition to be tested. It has the type BOOLEAN.  

 

STARTPNT(1:3) (DECIMAL)  
ENDPNT(1:3) (DECIMAL)  
AMPLITUDE(1:3) (DECIMAL)  

Example:  
GET/STRUCTURE=(X,<tor_name>,'STARTPNT',1) 
/STRUCTURE=(Y,<tor_name>,'ENDPNT',2) 
/STRUCTURE=(Z,<tor_name>,'AMPLITUDE',3); 

VEC(1:2) (DECIMAL)  

Example: )  
GET/STRUCTURE=(X,<vect_name>,'VEC',1 
/STRUCTURE=(Y,<vect_name>,'VEC','Y'); 

VEC(1:3) (DECIMAL)  

Example: )  
GET/STRUCTURE=(X,<vect_name>,'VEC',1 
/STRUCTURE=(Y,<vect_name>,'VEC','Y') 
/STRUCTURE=(Z,<vect_name>,'VEC','Z'); 

  



 

17.4.2 Example of Macros Creating 2D Geometry  
 

User's Guide Vitesse 
Chapter: The Tribon Geometry Macro Facility 

  
Copyright © 1993-2005 AVEVA AB 



 
Example 1  
This example is a macro creating some simple geometry.  

!  

! All macros begin with the MACRO-stmt  

!  
MACRO,RECTANGLE; 
  GET/POINT_2D=('Give first corner',P1) 
     /POINT_2D=('Give second corner',P3); 
  ASSIGN,X1,P1/XCOORD; 
  ASSIGN,Y1,P1/YCOORD;  !  The x- and y-coordinates 
  ASSIGN,X2,P3/XCOORD;  !  of the 2 points are needed 
  ASSIGN,Y2,P3/YCOORD; 
  POINT_2D,P2,X1,Y2;    !  Create the other 
  POINT_2D,P4,X2,Y1;    !  two corners 
  CONTOUR,CNT,P1 
    /LINEEND = P2 
    /LINEEND = P3       !  Create a contour 
    /LINEEND = P4 
    /LINEEND = P1; 
  PRESENT,CNT;          !  Display the contour 
  ! 
  !  All macros end with the ENDMACRO-stmt 
  ! 
ENDMACRO; 
In the macro RECTANGLE, the contour was created using the four 2D points. In some cases, it might 
be more convenient to define a contour with lines instead. The macro above will then look like this:  
MACRO,RECTANGLE; 
  GET/POINT_2D=('Give first corner',P1) 
     /POINT_2D=('Give second corner',P3); 
  ASSIGN,X1,P1/XCOORD; 
  ASSIGN,Y1,P1/YCOORD; 
  ASSIGN,X2,P3/XCOORD; 
  ASSIGN,Y2,P3/YCOORD; 
  POINT_2D,P2,X1,Y2; 
  POINT_2D,P4,X2,Y1; 
  LINE,L1,P1/LINEEND=P2; 
  LINE,L2,P2/LINEEND=P3; 
  LINE,L3,P3/LINEEND=P4; 
  LINE,L4,P4/LINEEND=P1; 
  CONTOUR,CNT 
    /LINE = L1 
    /LINE = L2 
    /LINE = L3 
    /LINE = L4; 

User's Guide Vitesse 
Chapter: The Tribon Geometry Macro Facility 



  PRESENT,CNT; 
ENDMACRO; 
Note that the CONTOUR statement looks different now. In the first case, the start point must be given 
but in the second case this point is the start point of the first line.  

 
  

Copyright © 1993-2005 AVEVA AB 



 
Example 2  
The macro SCREW below has 4 parameters. One of them, the drawing name, is given in the MACRO 
statement. This parameter tells where the result of the macro shall be stored when executed by the 
stand alone program. A drawing will be created using the form A3 and the scale chosen is 1:1. The 
NAME statement has no effect when the macro is executed interactively at a workstation. The result is 
then put into the current drawing.  

The macro can be found by following this link:  

  macro_screw.txt  

The figure below shows the result of the execution of the macro SCREW. The current drawing 
contained the rectangle and the length of the screw was given by using the different point modes, in this 
case the node mode. The start point was given with the close point mode.  

 

 

Figure 17:1. The result of the execution of the macro SCREW. 

 

User's Guide Vitesse 
Chapter: The Tribon Geometry Macro Facility 

  
Copyright © 1993-2005 AVEVA AB 



 

17.4.3 A Macro Generating a Volume  
 

User's Guide Vitesse 
Chapter: The Tribon Geometry Macro Facility 

  
Copyright © 1993-2005 AVEVA AB 



 
Example 3  
The macro PUMP is an example of a geometry macro creating a volume. It uses most of the volume 
primitives. Note that the general cylinder has a 2D parameter but the result is 3D. If the macro is run 
stand alone, the NAME statement gives the name of the volume model on the data bank. The x- and y-
extensions are also given.  

The macro can be found by following this link:  

  macro_pump.txt  

The figure below shows the result of the execution of the macro PUMP. The input angles were 180 
degrees and 45 degrees respectively. The dimension was given as the distance between two cursor 
positions, both for the pump length and the pump height.  

 

 

Figure 17:2. The result of the execution of the macro PUMP. 

 

User's Guide Vitesse 
Chapter: The Tribon Geometry Macro Facility 

  
Copyright © 1993-2005 AVEVA AB 



MACRO,PUMP; 
  NAME,'MOORINGPUMP'/VOLUME=(3000,3000); 
  GET/DECIMAL  =('Angle for pressure side: ',ANG1) 
     /DECIMAL  =('Angle for suction side: ',ANG2) 
     /POINT_3D =('Start point: ',STP) 
     /DISTANCE =('Pump length: ',LEN) 
     /DISTANCE =('Pump height: ',DIA); 
  ASSIGN,X,STP/XCOORD; 
  ASSIGN,Y,STP/YCOORD; 
  ASSIGN,Z,STP/ZCOORD; 
  ASSIGN,L,LEN%1250.0; 
  ASSIGN,R,DIA%400.0%2; 
  ASSIGN,L1,100*L; 
  ASSIGN,L2,405*L; 
  ASSIGN,L3,50*L; 
  ASSIGN,L4,15*L; 
  ASSIGN,L5,270*L; 
  ASSIGN,L6,L4; 
  ASSIGN,L7,L4; 
  ASSIGN,L8,305*L; 
  ASSIGN,L9,L4; 
  ASSIGN,L10,25*L; 
  ASSIGN,A11,35*L; 
  ASSIGN,L12,330*L; 
  ASSIGN,H12,10%330.0*L12; 
  ASSIGN,W12,80%330.0*L12; 
  ASSIGN,L13,L12; 
  ASSIGN,H13,H12; 
  ASSIGN,W13,W12; 
  ASSIGN,L14,75*L; 
  ASSIGN,L15,L14; 
  ASSIGN,L16,L4; 
  ASSIGN,L17,L4; 
  ASSIGN,L18,L4; 
  ASSIGN,L19,L4; 
  ASSIGN,L20,125*L; 
  ASSIGN,L21,L4; 
  ASSIGN,L22,L4; 
  ASSIGN,L23,L3; 
  ASSIGN,L24,L3; 
  ASSIGN,L25,L4; 
  ASSIGN,L26,L20; 
  ASSIGN,L27,L4; 
  ASSIGN,L28,L4; 
  ASSIGN,L29,L14; 
  ASSIGN,L30,L4; 
  ASSIGN,R1A,300*R; 
  ASSIGN,R1B,350*R; 
  ASSIGN,R2,R1B; 
  ASSIGN,R3,R1A; 
  ASSIGN,R4,400*R; 
  ASSIGN,R5,375*R; 
  ASSIGN,R7,R1A; 
  ASSIGN,R8,225*R; 
  ASSIGN,R9,R8; 
  ASSIGN,R10,150*R; 
  ASSIGN,R11,R10; 
  ASSIGN,R14A,75*R; 
  ASSIGN,R14B,100*R; 
  ASSIGN,R15A,R14A; 
  ASSIGN,R15B,R14B; 
  ASSIGN,R16,200*R; 
  ASSIGN,R17,R16; 
  ASSIGN,R18,R16; 



  ASSIGN,R19,R16; 
  ASSIGN,R20,60*R; 
  ASSIGN,R21,R10; 
  ASSIGN,R22,R10; 
  ASSIGN,R23A,10*R; 
  ASSIGN,R23B,125*R; 
  ASSIGN,R24A,R23A; 
  ASSIGN,R24B,R23B; 
  ASSIGN,R26,R20; 
  ASSIGN,R25,R10; 
  ASSIGN,R27,R10; 
  ASSIGN,R28,R10; 
  ASSIGN,R29,R10; 
  ASSIGN,R30,R10; 
  ASSIGN,XE1,X+L1; 
  ASSIGN,YE1,Y; 
  ASSIGN,ZE1,Z; 
  VECTOR_3D,VEC1,1,0,0; 
  POINT_3D,PE1,XE1,YE1,ZE1; 
  CONE,CON1,R1A,R1B/COORDCONE=(P,PE1); 
  COLOUR,'RED'; 
  PRESENT,CON1; 
  ASSIGN,XE2,L2+XE1; 
  POINT_3D,PE2,XE2,YE1,ZE1; 
  CYLINDER,CYL1,R2/COORDCYL=(PE1,PE2); 
  PRESENT,CYL1; 
  ASSIGN,XE3,L3+XE2; 
  POINT_3D,PE3,XE3,YE1,ZE1; 
  CYLINDER,CYL2,R3/COORDCYL=(PE2,PE3); 
  PRESENT,CYL2; 
  ASSIGN,XE4,L4+XE3; 
  POINT_3D,PE4,XE4,YE1,ZE1; 
  ASSIGN,R42,R4%2; 
  POINT_2D,PC1,R4,R42; 
  POINT_2D,PC2,R4,-R42; 
  POINT_2D,PC3,-R4,-R42; 
  POINT_2D,PC4,-R4,R42; 
  POINT_2D,PC5,0,1.5*R4; 
  POINT_3D,PGC1,XE3,YE1,ZE1-R42; 
  POINT_3D,PGC2,XE3,YE1+1,ZE1-R42; 
  POINT_3D,PGC3,XE3,YE1,ZE1+1-R42; 
  CONTOUR,CNT1,PC1 
    /LINEEND=PC2 
    /LINEEND=PC3 
    /LINEEND=PC4 
    /ARCMIDPNT=(PC5,PC1); 
  GENERALCYLINDER,GCL1,CNT1,L4,PGC1,PGC2,PGC3; 
  COLOUR,'GREEN'; 
  PRESENT,GCL1; 
  ASSIGN,XE5,L5+XE4; 
  POINT_3D,PE5,XE5,YE1,ZE1; 
  CYLINDER,CYL3,R5/COORDCYL=(PE4,PE5); 
  COLOUR,'MAGENTA'; 
  PRESENT,CYL3; 
  ASSIGN,XE6,L6+XE5; 
  POINT_3D,PE6,XE6,YE1,ZE1; 
  POINT_3D,PGC4,XE5,YE1,ZE1-R42; 
  POINT_3D,PGC5,XE5,YE1+1,ZE1-R42; 
  POINT_3D,PGC6,XE5,YE1,ZE1+1-R42; 
  GENERALCYLINDER,GCL2,CNT1,L6,PGC4,PGC5,PGC6; 
  COLOUR,'GREEN'; 
  PRESENT,GCL2; 
  POINT_3D,PPA1,XE3-L12%22,YE1-R4+(W12%2-0.2*W12), 
 ZE1-R4-H12%2; 



POINT_3D,PPA2,XE3-L12%22+L12,YE1-R4+(W12%2-0.2*W12), 
ZE1-R4-H12%2; 
POINT_3D,PPA3,XE3-L12%22+L12,YE1-R4+(W12-0.2*W12), 
ZE1-R4; 
PARALLELEPIPED,PAR1/CENLINPARA=(PPA1,PPA2,PPA3); 
PRESENT,PAR1; 
  POINT_3D,PPA4,XE3-L13%22,YE1+R4-(W13%2-0.2*W13), 
 ZE1-R4-H13%2; 
POINT_3D,PPA5,XE3-L13%22+L13,YE1+R4-(W13%2-0.2*W13), 
ZE1-R4-H13%2; 
POINT_3D,PPA6,XE3-L13%22+L13,YE1+R4+0.2*W13, 
ZE1-R4; 
PARALLELEPIPED,PAR2/CENLINPARA=(PPA4,PPA5,PPA6); 
PRESENT,PAR2; 
  ASSIGN,XE7,L7+XE6; 
  POINT_3D,PE7,XE7,YE1,ZE1; 
  CYLINDER,CYL4,R7/COORDCYL=(PE6,PE7); 
  COLOUR,'CYAN'; 
  PRESENT,CYL4; 
  ASSIGN,XE8,L8+XE7; 
  POINT_3D,PE8,XE8,YE1,ZE1; 
  CYLINDER,CYL5,R8/COORDCYL=(PE7,PE8); 
  PRESENT,CYL5; 
  ASSIGN,XE9,L9+XE8; 
  POINT_3D,PE9,XE9,YE1,ZE1; 
  CYLINDER,CYL6,R9/COORDCYL=(PE8,PE9); 
  PRESENT,CYL6; 
  ASSIGN,XE10,L10+XE9; 
  POINT_3D,PE10,XE10,YE1,ZE1; 
  CYLINDER,CYL7,R10/COORDCYL=(PE9,PE10); 
  COLOUR,'MAGENTA'; 
  PRESENT,CYL7; 
  ASSIGN,XE11,A11+XE10; 
  POINT_3D,PE11,XE11,YE1,ZE1; 
  SPHERESEG,SPH1,R11/COORDSEG=(PE10,PE11); 
  PRESENT,SPH1; 
  ASSIGN,XE14,XE8-170*L; 
  ASSIGN,YS14,YE1-R8; 
  ASSIGN,YE14,YS14-L14; 
  POINT_3D,PS14,XE14,YS14,ZE1; 
  POINT_3D,PE14,XE14,YE14,ZE1; 
  CONE,CON2,R14B,R14A/COORDCONE=(PS14,PE14); 
  COLOUR,'YELLOW'; 
  PRESENT,CON2; 
  ASSIGN,XE16,XE14; 
  ASSIGN,YS16,YE14; 
  ASSIGN,YE16,YE14-L14; 
  POINT_3D,PS16,XE16,YS16,ZE1; 
  POINT_3D,PE16,XE16,YE16,ZE1; 
  CYLINDER,CYL8,R16/COORDCYL=(PS16,PE16); 
  COLOUR,'CYAN'; 
  PRESENT,CYL8; 
  ASSIGN,XE18,XE16; 
  ASSIGN,YS18,YE16; 
  ASSIGN,YE18,YE16-L16; 
  POINT_3D,PS18,XE18,YS18,ZE1; 
  POINT_3D,PE18,XE18,YE18,ZE1; 
  CYLINDER,CYL9,R18/COORDCYL=(PS18,PE18); 
  PRESENT,CYL9; 
  ASSIGN,COS1,COSD(ANG1); 
  ASSIGN,SIN1,SIND(ANG1); 
  ASSIGN,XS20,XE18; 
  ASSIGN,XE20,XE18+SIN1*L20;; 
  ASSIGN,YS20,YE18; 



  ASSIGN,YE20,YE18-L20; 
  ASSIGN,ZE20,ZE1+COS1*L20; 
  ASSIGN,XM20,XS20+(1-COSD(45))*SIN1*L20; 
  ASSIGN,YM20,YE18-COSD(45)*L20; 
  ASSIGN,ZM20,ZE1+(1-COSD(45))*COS1*L20; 
  POINT_3D,PS20,XS20,YS20,ZE1; 
  POINT_3D,PM20,XM20,YM20,ZM20; 
  POINT_3D,PE20,XE20,YE20,ZE20; 
  TOROID,TOR1,R20/COORDTOR=(PS20,PM20,PE20); 
  PRESENT,TOR1; 
  ASSIGN,XS21,XE20; 
  ASSIGN,XE21,XE20+SIN1*L21; 
  ASSIGN,YS21,YE20; 
  ASSIGN,YE21,YE20; 
  ASSIGN,ZS21,ZE20; 
  ASSIGN,ZE21,ZS21+COS1*L21; 
  POINT_3D,PS21,XS21,YS21,ZS21; 
  POINT_3D,PE21,XE21,YE21,ZE21; 
  CYLINDER,CYL21,R21/COORDCYL=(PS21,PE21); 
  COLOUR,'RED'; 
  PRESENT,CYL21; 
  ASSIGN,XS22,XE21; 
  ASSIGN,XE22,XE21+SIN1*L22; 
  ASSIGN,YS22,YE21; 
  ASSIGN,YE22,YE21; 
  ASSIGN,ZS22,ZE21; 
  ASSIGN,ZE22,ZS22+COS1*L22; 
  POINT_3D,PS22,XS22,YS22,ZS22; 
  POINT_3D,PE22,XE22,YE22,ZE22; 
  CYLINDER,CYL22,R22/COORDCYL=(PS22,PE22); 
  PRESENT,CYL22; 
  ASSIGN,XS23,XE22; 
  ASSIGN,XE23,XE22+SIN1*L23; 
  ASSIGN,YS23,YE22; 
  ASSIGN,YE23,YE22; 
  ASSIGN,ZS23,ZE22; 
  ASSIGN,ZE23,ZS23+COS1*L23; 
  POINT_3D,PS23,XS23,YS23,ZS23; 
  POINT_3D,PE23,XE23,YE23,ZE23; 
  CONE,CON23,R23B,R23A/COORDCONE=(PS23,PE23); 
  COLOUR,'WHITE'; 
  PRESENT,CON23; 
  ASSIGN,XS24,XE23; 
  ASSIGN,XE24,XE23+SIN1*L24; 
  ASSIGN,YS24,YE23; 
  ASSIGN,YE24,YE23; 
  ASSIGN,ZS24,ZE23; 
  ASSIGN,ZE24,ZS24+COS1*L24; 
  POINT_3D,PS24,XS24,YS24,ZS24; 
  POINT_3D,PE24,XE24,YE24,ZE24; 
  CONE,CON24,R24A,R24B/COORDCONE=(PS24,PE24); 
  PRESENT,CON24; 
  ASSIGN,XS25,XE24; 
  ASSIGN,XE25,XE24+SIN1*L25; 
  ASSIGN,YS25,YE24; 
  ASSIGN,YE25,YE24; 
  ASSIGN,ZS25,ZE24; 
  ASSIGN,ZE25,ZS25+COS1*L25; 
  POINT_3D,PS25,XS25,YS25,ZS25; 
  POINT_3D,PE25,XE25,YE25,ZE25; 
  CYLINDER,CYL25,R25/COORDCYL=(PS25,PE25); 
  COLOUR,'CYAN'; 
  PRESENT,CYL25; 
  ASSIGN,XE15,XE14; 



  ASSIGN,YS15,YE1+R8; 
  ASSIGN,YE15,YS15+L15; 
  POINT_3D,PS15,XE15,YS15,ZE1; 
  POINT_3D,PE15,XE15,YE15,ZE1; 
  CONE,CON3,R15B,R15A/COORDCONE=(PS15,PE15); 
  COLOUR,'YELLOW'; 
  PRESENT,CON3; 
  ASSIGN,XE17,XE15; 
  ASSIGN,YS17,YE15; 
  ASSIGN,YE17,YE15+L17; 
  POINT_3D,PS17,XE17,YS17,ZE1; 
  POINT_3D,PE17,XE17,YE17,ZE1; 
  CYLINDER,CYL10,R17/COORDCYL=(PS17,PE17); 
  COLOUR,'CYAN'; 
  PRESENT,CYL10; 
  ASSIGN,XE19,XE17; 
  ASSIGN,YS19,YE17; 
  ASSIGN,YE19,YE17+L19; 
  POINT_3D,PS19,XE19,YS19,ZE1; 
  POINT_3D,PE19,XE19,YE19,ZE1; 
  CYLINDER,CYL11,R19/COORDCYL=(PS19,PE19); 
  PRESENT,CYL11; 
  ASSIGN,COS2,COSD(ANG2); 
  ASSIGN,SIN2,SIND(ANG2); 
  ASSIGN,XS26,XE19; 
  ASSIGN,XE26,XE19+SIN2*L26; 
  ASSIGN,YS26,YE19; 
  ASSIGN,YE26,YE19+L26; 
  ASSIGN,ZE26,ZE1+COS2*L26; 
  ASSIGN,XM26,XS26+(1-COSD(45))*SIN2*L26; 
  ASSIGN,YM26,YE19+COSD(45)*L26; 
  ASSIGN,ZM26,ZE1+(1-COSD(45))*COS2*L26; 
  POINT_3D,PS26,XS26,YS26,ZE1; 
  POINT_3D,PM26,XM26,YM26,ZM26; 
  POINT_3D,PE26,XE26,YE26,ZE26; 
  TOROID,TOR2,R26/COORDTOR=(PS26,PM26,PE26); 
  PRESENT,TOR2; 
  ASSIGN,XS27,XE26; 
  ASSIGN,XE27,XE26+SIN2*L27; 
  ASSIGN,YS27,YE26; 
  ASSIGN,YE27,YE26; 
  ASSIGN,ZS27,ZE26; 
  ASSIGN,ZE27,ZS27+COS2*L27; 
  POINT_3D,PS27,XS27,YS27,ZS27; 
  POINT_3D,PE27,XE27,YE27,ZE27; 
  CYLINDER,CYL27,R27/COORDCYL=(PS27,PE27); 
  COLOUR,'RED'; 
  PRESENT,CYL27; 
  ASSIGN,XS28,XE27; 
  ASSIGN,XE28,XE27+SIN2*L28; 
  ASSIGN,YS28,YE27; 
  ASSIGN,YE28,YE27; 
  ASSIGN,ZS28,ZE27; 
  ASSIGN,ZE28,ZS28+COS2*L28; 
  POINT_3D,PS28,XS28,YS28,ZS28; 
  POINT_3D,PE28,XE28,YE28,ZE28; 
  CYLINDER,CYL28,R28/COORDCYL=(PS28,PE28); 
  PRESENT,CYL28; 
  ASSIGN,XS29,XE28; 
  ASSIGN,XE29,XE28+SIN2*L29; 
  ASSIGN,YS29,YE28; 
  ASSIGN,YE29,YE28; 
  ASSIGN,ZS29,ZE28; 
  ASSIGN,ZE29,ZS29+COS2*L29; 



  POINT_3D,PS29,XS29,YS29,ZS29; 
  POINT_3D,PE29,XE29,YE29,ZE29; 
  CYLINDER,CYL29,R29/COORDCYL=(PS29,PE29); 
  COLOUR,'WHITE'; 
  PRESENT,CYL29; 
  ASSIGN,XS30,XE29; 
  ASSIGN,XE30,XE29+SIN2*L30; 
  ASSIGN,YS30,YE29; 
  ASSIGN,YE30,YE29; 
  ASSIGN,ZS30,ZE29; 
  ASSIGN,ZE30,ZS30+COS2*L30; 
  POINT_3D,PS30,XS30,YS30,ZS30; 
  POINT_3D,PE30,XE30,YE30,ZE30; 
  CYLINDER,CYL30,R30/COORDCYL=(PS30,PE30); 
  COLOUR,'RED'; 
  PRESENT,CYL30; 
  COLOUR,'GREEN'; 
ENDMACRO; 



 

17.4.4 The Possibility to Present a Text File on a Drawing  
 

User's Guide Vitesse 
Chapter: The Tribon Geometry Macro Facility 

  
Copyright © 1993-2005 AVEVA AB 



 
Example 4  
The macro LIST uses the TEXT and TEXTFILE statements to present a table on a drawing. The data 
are stored on a file. A heading is added and a frame is drawn.  

The macro can be found by following this link:  

  macro_list.txt  

The result of the macro is shown in the figure below.  

 

 

Figure 17:3. The result from the execution of the macro LIST. 

 

User's Guide Vitesse 
Chapter: The Tribon Geometry Macro Facility 

  
Copyright © 1993-2005 AVEVA AB 



MACRO,LIST; 
  GET 
   /POINT_2D=('Give upper left corner of frame',FRM); 
  ASSIGN,X,FRM/XCOORD; 
  ASSIGN,Y,FRM/YCOORD; 
  ASSIGN,TXH,3.5; 
  ASSIGN,ILSP,1.5*TXH; 
  ASSIGN,DX,45*TXH; 
! 
! Give number of lines 
! 
  ASSIGN,N,14; 
  ASSIGN,DY,(N+3)*ILSP; 
! 
! Create frame 
! 
  POINT_2D,P1,X+DX,Y; 
  POINT_2D,P2,X+DX,Y-DY; 
  POINT_2D,P3,X,Y-DY; 
  CONTOUR,CNT,FRM/LINEEND=P1/LINEEND=P2 
   /LINEEND=P3/LINEEND=FRM; 
PRESENT,CNT; 
! 
! Create vertical lines between the rows 
! 
POINT_2D,P4,X+6*TXH,Y; 
POINT_2D,P5,X+6*TXH,Y-DY; 
LINE,L1,P4/LINEEND=P5; 
PRESENT,L1; 
POINT_2D,P6,X+11*TXH,Y; 
POINT_2D,P7,X+11*TXH,Y-DY; 
LINE,L2,P6/LINEEND=P7; 
PRESENT,L2; 
POINT_2D,P8,X+19*TXH,Y; 
POINT_2D,P9,X+19*TXH,Y-DY; 
LINE,L3,P8/LINEEND=P9; 
PRESENT,L3; 
POINT_2D,P10,X+25*TXH,Y; 
POINT_2D,P11,X+25*TXH,Y-DY; 
LINE,L4,P10/LINEEND=P11; 
PRESENT,L4; 
POINT_2D,P12,X+33*TXH,Y; 
POINT_2D,P13,X+33*TXH,Y-DY; 
LINE,L5,P12/LINEEND=P13; 
PRESENT,L5; 
! 
! Put a heading 
! 
ASSIGN,DY,ILSP; 
POINT_2D,TXP,X,Y-DY; 
TEXT,TXT,TXP/TEXTLINE= 
'   DN  NAME   DIA     TH    QUA      MAT_NO'; 
PRESENT,TXT; 
POINT_2D,P14,X,Y-DY-ILSP; 
POINT_2D,P15,X+DX,Y-DY-ILSP; 
LINE,L6,P14/LINEEND=P15; 
PRESENT,L6; 
! 
! Put textfile 
! 
POINT_2D,TXP,X,Y-DY-2*ILSP; 
TEXTFILE,TXF,'STEEL.DAT'/POSLINES=(TXP,1,N); 
PRESENT,TXF; 
ENDMACRO; 



 

17.4.5 The Usage of Attributes in Geometry Macros  
 

User's Guide Vitesse 
Chapter: The Tribon Geometry Macro Facility 

  
Copyright © 1993-2005 AVEVA AB 



 
Example 5  
The macro ATTR shows the usage of the ATTRIBUTE statement. Note that it is possible to give the 
attribute number as an alias, a number or a variable.  
MACRO,ATTR; 
  ASSIGN,LS,105.6; 
  ASSIGN,DS,0.2543; 
  ATTRIBUTE,'CHAIR'/ATTRDATA=(I2,4) 
/ATTRDATA=(R1,LS) 
/ATTRDATA=(R2,DS) 
/ATTRDATA=(R3,35.45) 
/ATTRDATA=(S2,'I2: chair no') 
/ATTRDATA=(S3,'R1-R3: chair data'); 
ATTRIBUTE,55/ATTRDATA=(I,3) 
/ATTRDATA=(R4,1.234); 
ASSIGN,ATTNO,7777; 
GET/STR=('Give a string: ',STR); 
ATTRIBUTE,ATTNO/ATTRDATA=('S1',STR); 
ENDMACRO; 
The result of a stand alone execution of the macro ATTR is shown below.  
RUN SB_SYSTEM:SZ006 
Present Geometry Macro: 
(0)  Exit 
(1)  Print on terminal 
(2)  Create 2D geometry and store on DB 
(3)  Create 3D volume model and store on DB 
(4)  Create 3D volume model + picture and store on DB 
Enter activity :  1 
General Component Data Bank not assigned! 
Give name of macro to be run:  ATTR 
ATTNO = 1111 
I1                 0 
I2                 4 
R1         105.60000 
R2           0.25430 
R3          35.45000 
S1 
S2      I2: chair no 
S3      R1-R3: chair data 
ATTNO =             55 
R1           0.00000 
R2           0.00000 
R3           0.00000 
R4           1.23400 
S1 
S2 

User's Guide Vitesse 
Chapter: The Tribon Geometry Macro Facility 



S3     3 
Give a string: 
>  Just a test string !!! 
ATTNO =          7777 
S1     Just a test string !!! 
Once more ? N 
Give name of macro to be run: 
 

  
Copyright © 1993-2005 AVEVA AB 



 

17.4.6 Layer Handling  
 

User's Guide Vitesse 
Chapter: The Tribon Geometry Macro Facility 

  
Copyright © 1993-2005 AVEVA AB 



 
Example 6  
The macro LAYER shows the layer alias and layer class facilities. Note that a layer can be given as an 
alias or as a number. The layer class can be given either as the class name or the class number, each 
preceded by '#'.  
MACRO,LAYER; 
  GET/STRING=('Layer alias :  ',LALIAS) 
     /STRING=('Layer class :  ',LCLASS) 
     /INTEGER=('Layer number: ',LNUMBER); 
  LAYER,'NOLL'; 
  LAYER,'FORM'; 
  LAYER,1001; 
  LAYER,'#DRA'; 
  LAYER,'#1'; 
  LAYER,LALIAS; 
  LAYER,LCLASS; 
  LAYER,LNUMBER; 
ENDMACRO; 
The result of a stand alone execution of the macro LAYER is shown below.  
Present Geometry Macro: 
(0)  Exit 
(1)  Print on terminal 
(2)  Create 2D geometry and store on DB 
(3)  Create 3D volume model and store on DB 
(4)  Create 3D volume model + picture and store on DB 
  Enter activity :  1 
  General Component Data Bank not assigned! 
  Give name of macro to be run:  LAYER 
  Layer alias : 
  >  FORM 
  Layer class : 
  >  #AAA 
  Layer number: 
  >  12 
  LAYER & ALIAS:            0   ZERO 
  LAYER & ALIAS:          300   FORM 
  LAYER & ALIAS:         1001   VIEW1 
  LAYER CLASS:             10   DRA 
  LAYER CLASS:              1   PIPE 
  LAYER & ALIAS:          300   FORM 
  LAYER CLASS:             11   AAA 
  LAYER & ALIAS:           12   DOZEN 
  Once more ? Y 
  Layer alias : 
  >  FROM 
  Layer class : 

User's Guide Vitesse 
Chapter: The Tribon Geometry Macro Facility 



  >  #DRAW 
  Layer number: 
  >  100 
  LAYER & ALIAS:            0   ZERO 
  LAYER & ALIAS:          300   FORM 
  LAYER & ALIAS:         1001   VIEW1 
  LAYER CLASS:             10   DRA 
  LAYER CLASS:              1   PIPE 
  Layer alias FROM not defined. Layer ignored! 
  Layer class DRAW not found. Layer ignored! 
  LAYER:     100 
  Once more ? N 
  Give name of macro to be run: 
 

  
Copyright © 1993-2005 AVEVA AB 



 

17.4.7 The Facility of Using Conditional Statements in a Macro  
 

User's Guide Vitesse 
Chapter: The Tribon Geometry Macro Facility 

  
Copyright © 1993-2005 AVEVA AB 



 
Example 7  
This example illustrates the possibility of using the IF and WHILE statement to test the input data. Such 
a test can be useful to avoid runtime errors.  
MACRO,INPUT; 
  ASSIGN,CONT,1; 
  WHILE,CONT == 1; 
    GET/STR=('Key in colour',COL); 
    IF,COL == 'GREEN' OR COL == 'CYAN' 
      OR COL == 'BLUE' OR COL == 'MAGENTA' 
      OR COL == 'RED' OR COL == 'YELLOW' 
      OR COL == 'WHITE'; 
      ASSIGN,CONT,0; 
    ENDIF; 
  ENDWHILE; 
  ! 
  ! When desired colour has been given the rest 
  ! of the macro is executed. 
  ! 
ENDMACRO; 
It might be more convenient to have such a parameter check as a submacro which would look like 
follows.  
MACRO,INPUT_COLOUR,COL; 
  DECLARE,COL,STRING; 
  ASSIGN,CONT,1; 
  WHILE,CONT == 1; 
    GET/STR=('Key in colour',COL); 
    IF,COL == 'GREEN' OR COL == 'CYAN' 
      OR COL == 'BLUE' OR COL == 'MAGENTA' 
      OR COL == 'RED' OR COL == 'YELLOW' 
      OR COL == 'WHITE'; 
      ASSIGN,CONT,0; 
    ENDIF; 
  ENDWHILE; 
ENDMACRO; 
The usage of INPUT_COLOUR could be like this. 
MACRO,MAIN; 
  DECLARE,C,STRING; 
  CALL,INPUT_COLOUR,C; 
  COLOUR,C; 
  ! 
ENDIF; 
 

User's Guide Vitesse 
Chapter: The Tribon Geometry Macro Facility 

  
Copyright © 1993-2005 AVEVA AB 



 

17.4.8 The Possibility to Write Recursive Geometry Macros  
 

User's Guide Vitesse 
Chapter: The Tribon Geometry Macro Facility 

  
Copyright © 1993-2005 AVEVA AB 



 
Example 8  
This example illustrates the possibility of writing a recursive macro, i.e. a macro which calls itself as a 
submacro. It uses a modified version of the macro RECTANGLE given in Appendix 2.  
MACRO,RECPNT,PNT1,PNT2; 
  DECLARE,PNT1,POINT_2D; 
  DECLARE,PNT2,POINT_2D; 
  CALL,RECTANGLE,PNT1,PNT2; 
  ASSIGN,X1,PNT1/XCOORD; 
  ASSIGN,Y1,PNT1/YCOORD; 
  ! 
  !  When the condition is not fulfilled 
  !  no further calls to RECPNT are made 
  !  and the execution is terminated 
  ! 
  IF,X1 < 250; 
    ASSIGN,X2,PNT2/XCOORD; 
    ASSIGN,Y2,PNT2/YCOORD; 
    POINT_2D,PNT3,X2+X2-X1,Y2+Y2-Y1; 
    CALL,RECPNT,PNT2,PNT3; 
  ENDIF; 
ENDMACRO; 
MACRO,RECTANGLE,P1,P3; 
  DECLARE,P1,POINT_2D; 
  DECLARE,P3,POINT_2D; 
  ASSIGN,X1,P1/XCOORD; 
  ASSIGN,Y1,P1/YCOORD; 
  ASSIGN,X3,P3/XCOORD; 
  ASSIGN,Y3,P3/YCOORD; 
  POINT_2D,P2,X1,Y3; 
  POINT_2D,P4,X3,Y1; 
  CONTOUR,CNT,P1 
    /LINEEND = P2 
    /LINEEND = P3 
    /LINEEND = P4 
    /LINEEND = P1; 
  PRESENT,CNT; 
ENDMACRO; 
 

User's Guide Vitesse 
Chapter: The Tribon Geometry Macro Facility 

  
Copyright © 1993-2005 AVEVA AB 



 

17.4.9 Change Colour in Drawing by Using Geometry Macro  
 

User's Guide Vitesse 
Chapter: The Tribon Geometry Macro Facility 

  
Copyright © 1993-2005 AVEVA AB 



 
Example 9  
This macro is supposed to be started from the General Diagrams application.  

All cables without interference class and component defined will be drawn red.  

All cables with both interference class and component defined will be drawn green.  

All cables with either interference class or component defined will be drawn blue.  

The same function for Equipments with the data room and component.  
MACRO, OUTF_DIAG_COLOUR; 
! Declarations 
DECLARE, A1,  STRING; 
DECLARE, COMPNAME,  STRING; 
DECLARE, DELIM,  STRING; 
DECLARE, DWG,  STRING; 
DECLARE, E1,  EXTRACT; 
DECLARE, INDEX, INTEGER; 
DECLARE, INT_C,  STRING; 
DECLARE, LOOPMAX,  INTEGER; 
DECLARE, MODNAME,  STRING; 
DECLARE, PROJ,  STRING; 
DECLARE, ROOM, STRING; 
DECLARE, STAT,  INTEGER; 
DECLARE, SUB1,  STRING; 
DECLARE, SUB2,  STRING; 
DECLARE, SUB3,  STRING; 
! Initiate  
ASSIGN, DELIM,'-'; 
! Get the drawing name 
DRAWING_NAME,DWG; 
! Use data extraction to see which cables that are drawn in the diagram 
ASSIGN,A1,'DRA(DWG).VIE(*).NCABLE'; 
EXTRACT,E1,A1; 
GET/EXTRACT=(LOOPMAX,STAT,E1,DWG,,); 
IF,STAT == 1; 
LOOP,INDEX,1:LOOPMAX; 
ASSIGN,A1,'DRA(DWG).VIE(*).CABLE(INDEX).NAME'; 
EXTRACT,E1,A1; 
GET/EXTRACT=(MODNAME,STAT,E1,DWG,,INDEX,); 
IF,STAT == 1; 
! Get the cable data by using data extraction    
SPLIT,MODNAME,DELIM,PROJ,CAB_SYS,CAB_NAM,SUB2,SUB3; 
ASSIGN,CABLE_NAME,CAB_SYS&DELIM&CAB_NAM; 
ASSIGN,A1,'CABLE(PROJ).CAB_M(CABLE_NAME). COMP_N';EXTRACT,E1,A1; 
GET/EXTRACT=(COMPNAME,STAT,E1,PROJ, 
CABLE_NAME,); 
IF,STAT == 0; 

User's Guide Vitesse 
Chapter: The Tribon Geometry Macro Facility 



ASSIGN,COMPNAME,''; 
ENDIF; 
ASSIGN,A1, 
'CABLE(PROJ).CAB_M(CABLE_NAME).EL_PROP.INT_C'; 
EXTRACT,E1,A1; 
GET/EXTRACT=(INT_C,STAT,E1,PROJ,CABLE_NAME,,); 
IF,STAT == 0; 
ASSIGN,INT_C,''; 
ENDIF; 
! Draw cables without any data red 
IF,COMPNAME == '' AND INT_C == ''; 
CHANGEDRAW,'CABLE',MODNAME 
/MARKINGCOLOUR='RED'; 
ELSE; 
! Draw cables with all data green 
IF,COMPNAME /= '' AND INT_C /= ''; 
CHANGEDRAW,'CABLE',MODNAME 
/MARKINGCOLOUR='GREEN'; 
! Draw ca bles with some date blue 
ELSE; 
CHANGEDRAW,'CABLE',MODNAME 
/MARKINGCOLOUR='BLUE'; 
ENDIF; 
ENDIF; 
ENDIF; 
ENDLOOP; 
ENDIF, 
! Use data extraction to see which equipments that are drawn in the diagram 
ASSIGN,A1,'DRA(DWG).VIE(*).NEQUIP'; 
EXTRACT,E1,A1; 
GET/EXTRACT=(LOOPMAX,STAT,E1,DWG,,); 
IF,STAT == 1; 
LOOP,INDEX,1:LOOPMAX; 
ASSIGN,A1,'DRA(DWG).VIE(*).EQUIP(INDEX).NAME'; 
EXTRACT,E1,A1; 
GET/EXTRACT=(MODNAME,STAT,E1,DWG,,INDEX,); 
IF,STAT == 1; 
! Get the equipment data by using data extraction 
SPLIT,MODNAME,DELIM,PROJ,EQ_NAME,SUB1,SUB2,SUB3; 
ASSIGN,A1,'EQUIP(PROJ).ITEM(EQ_NAME).COMP_N'; 
EXTRACT,E1,A1; 
GET/EXTRACT=(COMPNAME,STAT,E1,PROJ,EQ_NAME,); 
IF,STAT == 0; 
ASSIGN,COMPNAME,''; 
ENDIF; 
ASSIGN,A1,'EQUIP(PROJ).ITEM(EQ_NAME).ROOM'; 
EXTRACT,E1,A1; 
GET/EXTRACT=(ROOM,STAT,E1,PROJ,EQ_NAME,); 



IF,STAT == 0; 
ASSIGN,ROOM,''; 
ENDIF; 
! Draw equipment items without any data red 
IF,COMPNAME == '' AND ROOM == ''; 
CHANGEDRAW,'EQUIP',MODNAME/ 
MARKINGCOLOUR='RED'; 
ELSE; 
! Draw equipment items with all data green 
IF,COMPNAME /= '' AND ROOM /= ''; 
CHANGEDRAW,'EQUIP',MODNAME 
/MARKINGCOLOUR='GREEN'; 
! Draw equipment items with some date blue 
ELSE; 
CHANGEDRAW,'EQUIP',MODNAME 
/MARKINGCOLOUR='BLUE'; 
ENDIF; 
ENDIF; 
ENDIF; 
ENDLOOP; 
ENDIF, 
ENDMACRO; 
The following macro would change the colours of the equipments and cables back to be the one defined 
by the default file.  
MACRO, OUTF_DIAG_DEFAULT; 
! Declarations 
DECLARE, A1,  STRING; 
DECLARE, DWG, STRING; 
DECLARE, E1,  EXTRACT; 
DECLARE, INDEX,  INTEGER; 
DECLARE, LOOPMAX,  INTEGER; 
DECLARE, MODNAME,  STRING; 
DECLARE, STAT,  INTEGER; 
! Get the drawing name 
DRAWING_NAME,DWG; 
! Use data extraction to see which cables that are drawn in the diagram 
ASSIGN,A1,'DRA(DWG).VIE(*).NCABLE'; 
EXTRACT,E1,A1; 
GET/EXTRACT=(LOOPMAX,STAT,E1,DWG,,); 
IF,STAT == 1; 
LOOP,INDEX,1:LOOPMAX; 
ASSIGN,A1,'DRA(DWG).VIE(*).CABLE(INDEX).NAME'; 
EXTRACT,E1,A1; 
GET/EXTRACT=(MODNAME,STAT,E1,DWG,,INDEX,); 
IF,STAT == 1; 
CHANGEDRAW,'CABLE',MODNAME 
/MARKINGCOLOUR='DEFAULT'; 
ENDIF; 



ENDLOOP; 
ENDIF; 
! Use data extraction to see which equipments that are drawn in the diagram 
ASSIGN,A1,'DRA(DWG).VIE(*).NEQUIP'; 
EXTRACT,E1,A1; 
GET/EXTRACT=(LOOPMAX,STAT,E1,DWG,,); 
IF,STAT == 1; 
LOOP,INDEX,1:LOOPMAX; 
ASSIGN,A1,'DRA(DWG).VIE(*).EQUIP(INDEX).NAME'; 
EXTRACT,E1,A1; 
GET/EXTRACT=(MODNAME,STAT,E1,DWG,,INDEX,); 
IF,STAT == 1; 
CHANGEDRAW,'EQUIP',MODNAME 
/MARKINGCOLOUR='DEFAULT'; 
ENDIF; 
ENDLOOP; 
ENDIF; 
ENDMACRO; 
 

  
Copyright © 1993-2005 AVEVA AB 




