中华人民共和国船舶行业标准

船舶轴系修理装配技术要求

CB/T 3420—92 分类号:R32

1 主题内容与适用范围

本标准规定了钢质船舶轴系**修理时的安装与配**合技术要求。

本标准适用于海洋航行的钢质船舶,内河航行和其他类型钢质船舶轴系修理时亦可参照执行。

2 尾轴与尾轴承的配合

- 2.1 铁梨木及层压胶木尾轴承
- 2.1.1 铁梨木及层压胶木尾轴承装配间隙与板条厚度按表 1 规定。

表 1

mm

	更换		安	装
轴径 d	极限间隙	板条极限厚度	安装间隙	新制板条最小厚度
≤100	3.50	_	0.90~1.00	
>100~120	4.00	_	1.00~1.10	
>120~150	4. 50	6. 00	1.10~1.20	11.00
>150~180	5.00	6. 50	1.20~1.30	12.00
>180~220	5. 50	7.00	1.30~1.40	12.00
>220~260	6.00	7.00	1.40~1.50	13.00
>260~310	6. 60	8.00	1.50~1.65	14.00
>310~360	7. 30	9. 00	1.65~1.80	15.00
>360~440	8.00	10.00	1.80~2.00	16.60
>440~500	8. 70	11.50	2.00~2.20	18.00
>500~600	9. 50	13.00	2.20~2.40	20.00
>600~700	10. 50	14. 50	2.40~2.60	22. 00

2.1.2 铁梨木及层压胶木尾轴承安装间隙按公式(1)计算:

$$\triangle = 0.003d + (0.50 \sim 0.70)$$
(1)

式中: △ -- 铁梨木及层压胶木尾轴承安装间隙, mm;

d—轴径,mm。

层压胶木(本标准指 MCS-2-1 桦木层压板)尾轴承的间隙可取式中较小值,极限间隙△max≈4△。尾轴承极限间隙,一般以距尾端 100mm 处垂直方向的间隙数值作为更换

依据。

- 2.1.3 对中机型尾轴架处尾轴承的极限间隙,可按表 1 中规定值放大 20%;对尾机型船舶尾轴承,其极限间隙可取表 1 中规定值的 75%。
- 2.1.4 对于正常修理的船舶,尾轴承镗削时轴心线可提高, 其值可为安装间隙的 50%。
- 2.1.5 偏心镗削尾轴承时,最薄处板条的厚度应满足表1中规定的新制最小厚度值。
- 2.1.6 船舶修理时,当尾轴承径向间隙超过极限间隙但板条 最薄处厚度尚未超过表 1 中极限值,则允许通过尾轴更换铜 套来调整配合间隙,新制铜套的厚度允许加大到原设计厚度 的 1.25 倍。
- 2.1.7 船舶修理时,如铁梨木或层压胶木板条厚度尚可继续使用时,则要仔细检查板条是否有松动、碎裂,情况严重时可进行局部或全部更换。
- 2.2 轴承合金尾轴承
- 2.2.1 滑油润滑的轴承合金尾轴承装配间隙与轴承合金厚度按表 2 规定。

表 2

mm

	更	换	安	
轴径 d	极限间隙	轴承合金允 许最小厚度	安装间隙	轴承合金新 制最小厚度
<u></u> ≤100	1.80	1.60	0.40~0.50	3. 20
>100~120	2. 00	1.60	0.45~0.55	3. 20
>120~150	2. 20	1.80	0.50~0.60	3.60
>150~180	2.40	1.80	0.55~0.65	3.60
>180~220	2. 60	2.00	0.60~0.70	4.00
>220~260	2. 80	2.00	0.65~0.75	4.00
>260~310	3. 00	2. 20	0.70~0.80	4.40
>310~360	3. 20	2. 20	0.75~0.85	4.40
>360~440	3.50	2.40	0.80~0.90	4.80
>440~500	3.80	2.40	0.85~0.95	4.80
>500~600	4. 10	2.60	0.90~1.00	5. 20
>600~700	4. 50	2.60	1.00~1.10	5. 20

2.2.2 轴承合金尾轴承安装间隙和极限间隙分别按公式(2)和(3)计算:

$$\triangle \approx 0.001d + 0.40$$
(2)

 \triangle max $\approx 4 \triangle$ (3)

式中: △──轴承合金尾轴承安装间隙, mm; d──轴径, mm;

△max---轴承合金尾轴承极限间隙,mm。

- 2.2.3 当轴承合金尾轴承长度 L>4d 时,为减少轴承边缘负荷,其安装间隙应放大 10%~20%。
- 2.2.4 对航行于水浅流急、航道狭窄的船舶,为减少轴系的振动,防止轴系发生突然事故,轴承合金尾轴承的极限间隙应按规定值缩小 25%。
- 2.2.5 对于低转速(n<150r/min)船舶轴系,其轴承合金尾轴承的极限间隙可放大 20%。
- 2.2.6 对采用青铜或铸铁作为尾轴承材料的船舶轴系,其安装间隙应比表 2 中规定值放大 25%,其更换值按照表 2 规定。
- 2.2.7 一般修理的船舶,修理后的轴承合金尾轴承的安装间隙应取表2中较大值。镗孔时轴心线可提高,其数值为安装间隙值的一半。
- 2.2.8 轴承合金尾轴承内孔经镗削加工后,表面粗糙度 R_• ≤1.6 μm。
- 2.3 橡胶尾轴承
- 2.3.1 橡胶尾轴承的安装间隙和极限间隙按表 3 规定。

丰	3
衣く	J

mm

41-67	金属板条橡胶尾轴		整铸橡胶尾轴承		
轴径 d	安装间隙	极限间隙	安装间隙	极限间隙	
€100	0.60~0.70	3.50	0.45~0.50	3. 50	
>100~120	0.65~0.75	4.00	0.50~0.55	4. 00	
>120~150	0.70~0.80	4.50	0.55~0.60	4.50	
>150~180	0.75~0.85	5.00	0.60~0.70	5. 00	
>180~220	0.80~0.95	5. 50	-		
>220~260	0.90~1.05	6.00	_		
>260~310	1.00~1.15	6. 50	_		
>310~360	1.10~1.25	7. 20	<u> </u>		
>360~440	1.20~1.35	7. 80	_		
>440~500	1.30~1.50	8. 50			
>500~600	1.45~1.70	9.00	_		
>600~700	1.65~1.90	10.00	-		

2.3.2 金属板条橡胶尾轴承安装间隙按公式(4)计算:

$$\triangle = 0.002d + 0.50$$
(4)

式中:△──金属板条橡胶尾轴承安装间隙,mm; d──轴径,mm。

2.3.3 整铸式橡胶尾轴承安装间隙按公式(5)计算:

$$\triangle = 0.002d + 0.20$$
(5)

式中:△──整铸橡胶尾轴承安装间隙,mm; d──轴径,mm

- 2.3.4 船舶修理时,如橡胶尾轴承的径向间隙不符合表 3 中规定时,不允许偏心磨削板条橡胶尾轴承,但允许锉磨板条背面,以使轴承间隙符合要求。修理时允许将上下橡胶板条对调,使之继续使用。
- 2.3.5 橡胶尾轴承老化或脱壳、剥落严重者,应予以更换。
- 2.4 赛龙尾轴承
- 2.4.1 赛龙尾轴承安装加工间隙按公式(6)计算:

$$\triangle = \triangle_1 + C_1 + C_2 + C_3 \qquad \cdots \qquad (6)$$

- 式中: \triangle 赛龙尾轴承安装加工间隙,当 $C_B = 0$ 时,即为安装间隙,mm;
 - △· 赛龙尾轴承运转最小间隙,当 d≤150 时,按公式(7)计算,当 d>150 时,按公式(8)计算,mm;
 - C, —— 赛龙尾轴承热膨胀量, 一般取为 0.05~0.15(视 尾轴轴径大小而定, 下同), mm;
 - C, 赛龙尾轴承水膨胀量, 一般取为 0.15~0.40, mm:
 - C_B 赛龙尾轴承内孔安装收缩量(只限在筒型轴承加工时),一般取为 0.60~1.5,mm。

$$\triangle_1 = 0.0023d + 0.123 \cdots (7)$$

$$\triangle_1 = 0.0025d + 0.3$$
(8)

式中:d——尾轴工作轴径,mm。

- 2.4.2 赛龙尾轴承更换的极限间隙可参照 2.1。
- 3 中间轴与中间轴承的配合

3.1 轴承合金中间轴承

3.1.1 轴承合金中间轴承的装配间隙与轴承合金厚度按表 4 规定。

4

mm

	更	换	安	装
轴径 d	极限间隙	轴承台金极限 厚度	安装间隙	轴承合金新制 最小厚度
€100	0.40	1. 20	0.15~0.19	3.00
>100~120	0.45	1.40	0.18~0.22	3. 00
>120~150	0.50	1.60	0.20~0.24	3.00
>150~180	0.55	1.80	0.22~0.26	3.00
>180~220	0.60	2. 00	0.24~0.27	3.50
>220~260	0.65	2. 20	0.27~0.34	3.50
>260~310	0.75	2. 40	0.32~0.40	4.00
>310~360	0. 85	2. 60	0.38~0.46	4.00
>360~440	0. 95	2. 80	0.42~0.54	4.50
>440~500	1.10	3.00	0.50~0.62	4.50
>500~600	1. 30	3.00	0.55~0.70	5.00
>600~700	1.50	3. 00	0.65~0.80	5. 00

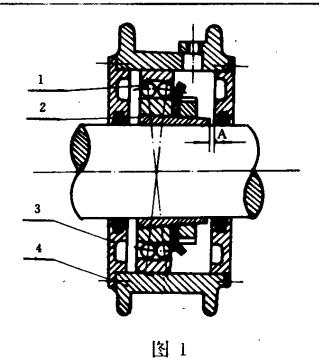
3.1.2 轴承合金中间轴承安装间隙和极限间隙分别按公式 (9)和(10)计算:

$$\triangle = 0.001d + 0.10$$
(9)

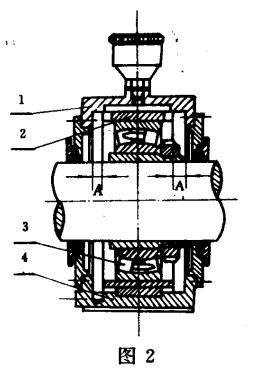
$$\triangle$$
max = 2.5 \triangle (10)

式中: \triangle — 轴承合金中间轴承安装间隙,mm;

d——轴径,mm;


△max---轴承合金中间轴承极限间隙,mm。

3.1.3 表 4 中所列安装间隙适用于转速 n≤150r/min 的中间轴承。


当n=150~350r/min,安装间隙应增大0.04~0.06mm;

当n=350~750r/min,安装间隙应增大0.06~0.10mm。

- 3.1.4 对于铸钢材料的轴瓦或本体,对轴承合金厚度的要求允许按表4规定值减薄20%。
- 3.1.5 中间轴承轴承合金工作表面上不应有裂纹、烧熔、拉毛、剥落等现象。若有局部缺陷允许修复,严重时应重新浇注轴承合金。
- 3.2 滚动式中间轴承
- 3.2.1 滚动式中间轴承如图 1、图 2 所示。其更换与安装按表 5 规定。

1-球轴承;2-锥形紧定套; 3-轴承端盖;4-轴承座

1-轴承盖;2-轴承罩;3-滚子轴承;4-轴承座

			表 5			mm
轴 径	d	€120	>120~ 180	>180~ 260	>260~ 360	>360~ 500
轴承外圈 与座内孔	安装值	0.06~ 0.08	0.08~ 0.10	0.10~ 0.13	0.13~ 0.15	0.15~ 0.18
可座内孔 隙	调 整 更换值	0.16	0. 20	0. 25	0.32	0.40
轴承内圈与		-0.02~ +0.015	-0.015~ +0.02	−0.01~ +0.025	-0.005~ +0.03	0~ +0.04
轴承的极间	限径向 隙	0.30	0.35	0.40	0.50	0.70
轴颈 d 的 圆柱度公		0.010	0.013	0. 015	0. 020	0. 025

- 3.2.2 轴承内圆与轴颈配合具有紧定套时,固紧后应保证轴承转动灵活。当陆承座采用水冷却时,则轴承外圈与座内孔的安装间隙可按表 5 规定值放大 50%。
- 3.2.3 无紧定要宣轴承与轴颈相配后,发现有松脱打滑现象时,应进行修复。
- 3.2.4 与轴承内孔相配之轴颈表面粗糙度 R。值为 1.6μm。
- 3.2.5 轴承装入轴颈时,允许用热油加温后进行装配。
- 3.2.6 凡发现轴承过热、锈蚀、剥蚀、护圈破裂、滚柱(珠)严重磨损、转动不灵活时应予换新。
- 3.2.7 油润滑轴承安装结束时,应注入滑油。油位高度应不低于最下面滚柱(珠)的中心位置。

3.2.8 滚动轴承(及其紧定套)装配后,前后缘与轴承座内壁间的轴向移动余量见图 1 及图 2 中的 A,不得低于表 6 之规定值。

表 6

轴系总长 m	€20	>20~35	>35~50	>50
移动余量 mm	3~4	4~7	7~12	12~15

4 滚动式尾轴承

滚动式尾轴承(见图 3)的检查、更换及安装可参照 3.2。

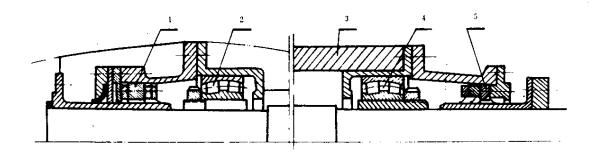


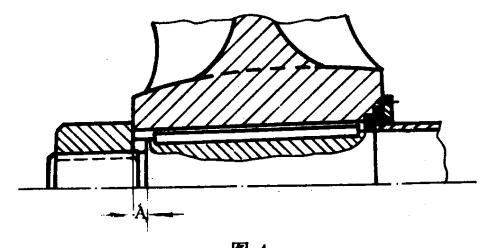
图 3 1-尾端密封;2-尾端轴承;3-尾轴管 4-首端轴承;5-首端密封

5 推力轴与推力轴承的配合

5.1 推力轴承的安装间隙、极限间隙按7规定。

表 7

mm

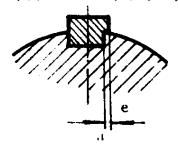

	推力轴与推	力轴承	推力环与推	力轴承	10: -1· 14:
hb-6% 3	径向「	可 隙	轴 向 总	间隙	推力块 轴承合
轴径 d	安装间隙	极限间隙	安装间隙	极限间隙	金极限厚度
€100	0.10~0.15	0.40	0. 10~0. 20	0.40	1. 20
>100~120	0.13~0.18	0.45	0.15~0.25	0. 45	1.40
>120~150	0.15~0.20	0. 50	0. 20~0. 30	0. 52	1.60
>150~180	0.18~0.23	0.55	0. 25~0. 35	0.60	1. 80
>180~220	0. 20~0. 25	0.60	0.30~0.40	0.70	2. 00
>220~260	0. 22~0. 30	0.65	0.35~0.48	0. 80	2. 20
>260~310	0. 25~0. 33	0.70	0.40~0.55	0.90	2. 40
>310~360	0.32~0.40	0.80	0.45~0.60	1.00	2. 60
>360~440	0.36~0.45	0.90	0.50~0.70	1.15	2. 80
>440~500	0.40~0.50	1.00	0.55~0.75	1.30	3. 00
>500~600	0.45~0.55	1.10	0.60~0.80	1.45	3. 00
>600~700	0.50~0.60	1.20	0.70~0.90	1.60	3. 00

- 5.2 表 7 所列系指单环式推力轴承,对采用压力润滑者其安装间隙应取表中较大值。对多环式推力轴承轴向极限总间隙可按表 7 放大 25%。
- 5.3 对尾轴管尾端采用金属环密封装置时,推力轴承的轴向间隙允许缩小 20%。

- 5.4 推力轴颈与支承轴瓦应经研制配合,要求均匀接触,沿圆周方向接触面积不小于 60°的范围。推力环与推力块经研制配合,要求均匀接触,接触面积在 75%以上。推力块轴承合金表面不应有气孔、疏松等缺陷,其背部与推力块本体粘合牢固,不允许有脱壳现象。
- 5.5 推力轴承的推力块之间的厚度差,对用调节板调节的不应大于 0.02mm;对用支撑螺栓调节的则可不受此限制。

6 螺旋桨与尾轴的装配

- 6.1 螺旋桨锥孔与尾轴锥体的装配
- 6.1 螺旋桨锥孔与尾轴锥体的装配如图 4 所示。尾轴锥体经光车后,螺旋桨锥孔与尾轴锥体必须重新进行刮削和研配。接触应均匀,应保证结合面在全长上均匀贴合,在键装配后检查时,65%以上面积应均匀接触,其中锥部大端接触必须良好。用色油检查,要求每 25mm×25mm 的面积上不得少于 2~4个接触点,且桨毂锥孔小端与尾轴小端面间距 A 在 10~15mm 以上(视轴径大小而定)。


- 6.1.2 对沿海及内河船舶,当螺旋桨直径 D<4.5m 时,允许用键连接的同时,采用环氧树脂等粘结剂胶合装配。此时对桨 数锥孔与轴锥体的接触要求,以及对键和桨载键槽的配合要求可以适当降低。
- 6.1.3 对小型船舶,当螺旋桨直径 D<1.5m 时,允许采用环氧树脂等粘结剂无键胶合安装。此时只要求桨毂锥孔两端各有 40~60mm 长度的环面积上均匀接触。用色油检查,要求每 25mm×25mm 的面积上不得少于 2 个接触点。
- 6.2 平键与键槽的配合
- 6.2.1 平键加工应平直,一般应采用磨削精加工,宽度差应小于 0.02mm。四角应加工成小圆角,其圆角半径为 2~6mm (视键宽大小而定)。
- 6.2.2 平键与尾轴键槽应进行单独修刮配准,并略有过盈,要求能将键轻轻打入槽内不准松脱。两侧面应均匀接触,在80%周长上插不进 0.05mm 塞尺。平键底部与键槽底面应用色油检验,接触面积为键长的 30%以上,不得悬空,允许用听声音的办法检查。
- 6.2.3 平键与桨毂键槽应进行配制,要求两侧面接触均匀, 按表 8 所示的塞尺厚度检查时,所插进的部分不超过接触长 度的 40%,且键两端 2 倍于键宽的长度上接触应良好。装配 后平键顶部与桨叶键槽顶部的间隙一般为 0.20~0.60mm。

		12 0		111111
平健宽b	€30	>30~50	>50~80	>80~120
检验塞尺的厚度	0. 05	0.06	0.07	0. 08

主。

6.2.4 螺旋桨与尾轴键槽经过修理后,在配制新的平键时,

根据配合情况,允许将两侧面制成阶梯形,如图 5 所示的两种形状。但图 5(a)的形状,其偏移量 e 不应大于 0.50mm。

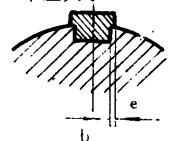


图 5

- 6.2.5 螺旋桨及尾轴的键槽经多次修理后,其厚度不断扩大,但极限宽度不能超过尾轴轴颈的 0.33 倍。
- 6.2.6 采用环氧树脂等粘结剂胶合安装螺旋桨时,对平键与桨槽的配合要求可适当降低,视键长不同允许留有 0.20~ 0.50mm 的空隙。
- 6.3 具有铜保护套的尾轴与螺旋桨的装配
- 6.3.1 具有铜保护套的尾轴与螺旋桨装配时应有橡胶水密装置,常用的橡胶水密装置见图 6 所示。具有防蚀衬套者应加垫料后与桨毂装配,见图 6(c)、6(d)。

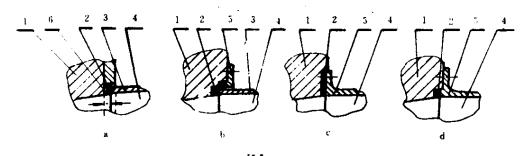


图 6

1一螺旋桨;2一橡胶圈;3一保护套;

4一尾轴;5一压紧法兰或防蚀套筒本体;6一挡圈

6.3.2 尾轴与螺旋桨装配后,铜套后端面和桨毂锥孔前端面

间的距离 A(见图 6a)以及橡胶圈内外圆尺寸参照表 9 规定。

表 9

mm

轴 径 d	€200	> 200~300	>300~400	>400~600
间距 A 推荐值	12	14	16	18
水密橡胶圈内径与轴 过盈值 水密橡胶圈外径与桨 毂间隙值	3~4	4~ 5	5∼6	6~8

6.3.3 水密橡胶圈的厚度按表 10 规定。

-	_	_
= =	1	n
AX.		v

mm

测量间距 A	€20	>20~30	>30~50
水密橡胶厚度	A+(2~3)	A+(3~4)	A+(4~5)

7 螺旋桨的安装

- 7.1 无键螺旋桨的油压安装
- 7.1.1 用油压安装无键螺旋桨时,螺旋桨套合到尾轴上的轴向推入量 S 介于 S_1 和 S_2 之间。 S_1 和 S_2 由公式(11)和公式(12)计算:

$$S_{1} = \frac{1}{K} [47750 \times 10^{4} \frac{\text{Ne}}{\text{An}_{e}} (\frac{C_{1}}{E_{1}} + \frac{C_{2}}{E_{2}}) + (\alpha_{2} - \alpha_{1}) \cdot (35 - t)d1 + 0.03] \cdots (11)$$

$$S_{2} = \frac{1}{K} [0.7\sigma_{S}d_{1} \frac{(d_{2}/d_{1})^{2} - 1}{\sqrt{3(d_{2}/d_{1})^{4} + 1}} \cdot (\frac{C_{1}}{E_{1}} + \frac{C_{2}}{E_{2}}) - (\alpha_{2} - \alpha_{1})d_{1}t] \cdots (12)$$

式中:S1---最小轴向推入量,mm;

S₂——最大轴向推入量,mm;

 C_1 ——比值,按公式(13)计算;

C, —— 比值, 按公式(14)计算;

K----尾轴螺旋桨端锥度;

N。——传递到尾轴螺旋桨端的额定功率,kw;

A---螺旋桨毂与尾轴的理论接触面积,mm;

ne——传递额定功率 Ne 时的转速,r/min;

E1 — 尾轴材料弹性模数,对钢质轴,取

$$E_1 = 20.6 \times 10^4 MPa;$$

E, — 螺旋桨材料弹性模数,对铜质螺旋桨,取

$$E_2 = 11.77 \times 10^4 MPa;$$

α1 — 尾轴材料线膨胀系数,对钢质一般取

$$\alpha_1 = 11 \times 10^{-6}, 1/\%$$

α2---螺旋桨材料的线膨胀系数,对铜质一般取

$$\alpha_2 = 18 \times 10^{-6}, 1/C;$$

σ.——螺旋桨材料的屈服强度,Mpa;

t——螺旋桨套合时的温度,℃。

$$C_1 = \frac{1 + (d_0/d_1)^2}{1 - (d_0/d_1)^2} - \mu_1 \quad \cdots \qquad (13)$$

$$C_2 = \frac{(d_2/d_1)^2 + 1}{(d_2/d_1)^2 - 1} + \mu_2 \quad \cdots \qquad (14)$$

式中:d。——轴中孔直径,mm;

d₁——套合接触长度范围内轴的平均直径,mm;

d₂——桨毂的平均外径,mm;

 μ_1 ——尾轴材料的泊松比,钢质取 $\mu_1=0.30$;

 μ_2 — 螺旋桨材料的泊松比,铜质取 $\mu_2=0.34$ 。

- 7.1.2 螺旋桨修理安装时,可以参照原装配线安装到位。对 其周向位置有严格要求时,必须保证准确定位。如果需要对螺 旋桨的轴向推入量进行重新校核确定时,应以螺旋桨和尾轴 锥部的实际接触面积不小于理论接触面积的 70%作为套合 的起始点,一般可取总压紧力的 5%作为起始压紧力,并应做 好实船安装的检查线。
- 7.1.3 在螺旋桨安装套合时,应使螺旋桨与尾轴的温度相等,若两者有温度差时,必须对轴向推入量S进行修正。轴向推入量S应根据环境温度的不同而调整决定。
- 7.2 有键螺旋桨的液压安装
- 7.2.1 有键螺旋桨液压安装时的压紧力可参照公式(15)进行计算:

$$T \geqslant \frac{1.732 \times 10^4 P}{R \cdot n} \qquad \cdots (15)$$

式中:T---压紧力,N;

P——主机输出轴功率,kw;

n——主机额定转速,r/min;

R——桨毂锥孔配合接触部分平均内半径,m。

- 7.2.2 根据螺旋桨材质的不同,依照钢质、铸铁和铜质顺序, 其压紧力可分别取公式(15)的 90%~110%。
- 7.2.3 螺旋桨安装时,若桨与轴有温度差,则必须对压紧力和原轴向推入量进行修正。
- 7.2.4 采用锁紧螺母安装时,其轴向压紧量按公式(16)计 78

箅:

$$B = K \cdot T \qquad \cdots (16)$$

式中:B---轴向压紧量,mm;

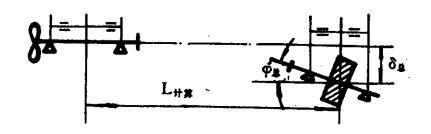
T 一 按公式(15)计算之压紧力,N;

K——系数,当锥度为 1/12 时,K= 5×10^{-7} ; 当锥度为 1/15 时,K= 6×10^{-7} 。

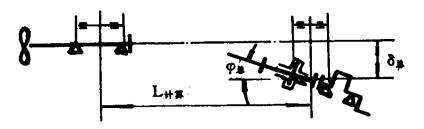
7.3 螺旋桨安装时注意事项

螺旋桨与尾轴装紧,并将螺母装妥后,必须装有可靠的防松装置。桨毂导流帽安装必须牢固,并有可靠的密封性。空腔内应注满石蜡等防腐材料。

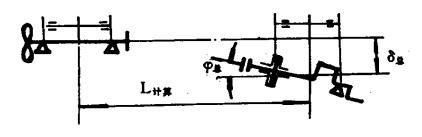
8 轴系校中


- 8.1 轴系校中的条件与要求
- 8.1.1 轴系校中检查、安装和交验等视工作量大小可以分别在船坞内、船排上或水上进行,并应以水上的测量数值作为交验的主要依据。
- 8.1.2 轴系校中检查、安装和交验等应考虑排除阳光照射引起船体变形所带来的影响。要求在夜间或阴雨天,最好是在平潮时进行。
- 8.1.3 轴系校中检查和交验时,应停止一切冲击、敲打等振动性作业。
- 8.1.4 船舶修理时轴系校中的方法可和该船新造时相同,亦可根据各船厂的合理工艺和船舶的特点而定。
- 8.2 轴系中心线总偏差验收要求
- 8.2.1 轴系校中时按直线校中诸方法测得主机与尾轴两端 法兰间的轴线总偏差值若符合表 11 的规定值,则该轴线被认

为合格。如在实际运转中,个别轴承有发热现象,则应调整中间轴承的位置。


表 11

L _H #	总偏移 δ ₄ (φ=0) mm				总曲折 φ± (δ=0) mm/m							
			轴	Í	约	最	小 m	j	Ĺ		•	
	100	150	200	300	400	500	100	150	200	300	400	500
5				0. 42		-		0. 28				
10				1. 70				0. 51				
15	<u> </u>	} 				2. 30				 		0. 22
20						4. 20						
30	ļ			ļ		4. 90						
40	83. 2	55. 5	41.6	27.7	20. 8	16.6	3. 12	2. 07	1.56	1.04	0. 78	0. 62
50		86. 7	65. 0	43. 3	32. 5	26.0	—	2. 59	1. 95	1. 30	0. 97	0. 78
60		—	93. 6	62.4	46.8	37. 4			2. 34	1.56	1. 17	0. 94
70		_		84. 9	63. 7	51.0		*****		1.82	1.36	1.09
80		_			83. 2	66. 6	_				1.56	1.26


8.2.2 表 11 中, L₊₊ 值为轴系受连接偏中影响后弯曲部分的长度, 如图 7 所示, 其安装要求应较表 11 中值缩小 50%。

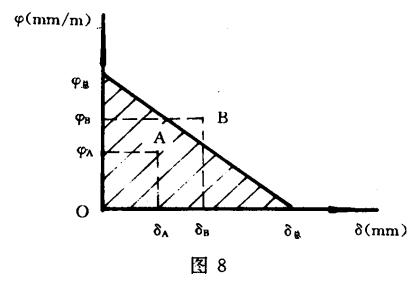
a. 主机减速器轴(电机轴)与轴系连接

b. 曲轴与推力轴准确对中后与轴系连接

c. 曲轴直接与轴系连接 图 7

轴系中心线允许总偏差按公式(17)和公式(18)计算:

当
$$\delta_{1} = 0$$
, $\varphi_{1} = 7.8 \times 10^{-3} \cdot \frac{L_{# \#}}{d}$ (18)


式中:φ₄ — 轴系中心线总曲折值, mm/m;

δ₄ — 轴系中心线总偏移值, mm;

L_{tt#}——轴系受连接偏中影响后弯曲部分的长度,mm;

d---轴的最小直径,mm

8.2.3 表 11 的使用方法:根据所测轴系计算长度和轴径,由表中划出 δ_{a} 和 φ_{a} ,作出 φ_{a} 一 δ_{a} 的座标三角形(见图 8)。如 测得 A 轴系的总偏差值为 φ_{A} 、 δ_{A} ,其在座标上的交点 A 处在三角形内(阴影部分),则 φ_{A} 一 δ_{A} 为合格。反之,如图 8 中 B 点,其 φ_{B} 和 δ_{B} 虽然均小于 φ_{a} 和 δ_{a} ,但 B 处于三角形之外,则该轴系总偏差值 φ_{B} 一 δ_{B} 认为是不合格的。

- 8.2.4 如轴系总偏差照表 11 中规定值有所超过,尚可按负荷法和计算法来交验轴系,亦可用偏心镗削尾管或者移动主机,使轴系中心线为一直线状态。
- 8.3 轴系各法兰校中安装时偏差要求
- 8.3.1 轴系各法兰校中安装时偏差要求按表 12 规定。

表 12

分 类	要求校中部位	偏移δ mm	Ħ	折 φ mm/m			
	推力轴与相邻 中间轴法兰	€0.15	€0.20				
长轴系"	尾轴与相邻中间轴法兰	尾轴安装间隙的 25%	8=0日寸	<0.25 (上开口之值) <0.50 (下开口之值)			
	中间轴与中间轴相邻法兰	按 8.3.3 规定 δ和 φ值。	的原则,过	性行合理分配			
短轴系*)	推力轴后各法兰	≪0. 25	€0. 25				
离合器	气胀式离合器	€0.60	€2.00				
門口語	齿形离合器	€0.40	€1.00				
弹性橡胶圖连接 螺栓联器法兰		€0.40	€1.00				
主机曲轴与推力轴 (或齿轮轴)法兰			€0.10				

- 注:1) 长轴系指具有两根或两根以上中间轴的轴系。
 - 2) 短轴系指具有一根中间轴或无中间轴的轴系。
- 8.3.2 中间轴相邻法兰的偏移与曲折值,均可参照尾轴与相邻中间轴法兰的要求而稍许降低。各中间轴法兰的δ与φ值基本上是平均分配,但靠近轴系中间部分的法兰,要求尚可相

应降低些。但当 δ=0 时,φ_{max}≤0.60mm/m。

- 8.3.3 无论用何种方法校中和交验轴系,在曲轴最后一道曲拐臂距离允许范围之内,调整偏移δ值,使推力轴(齿轮轴或电机轴)轴心线比曲轴轴心线低 0.05~0.10mm。
- 8.3.4 当轴径 d≥400mm 时,要求各法兰的曲折值为表 12 中规定值的 75%。
- 8.3.5 修理船舶轴系的某项质量指标略有超过上述规定值,如船舶营运正常(包括轴承温度、轴系振动等),允许继续使用。

8.4 顶举法校中安装轴系

如轴系安装采用合理校中计算法进行,则在所有轴系安装工作已完成,按相对法兰的偏移和曲折校中后,采用顶举法,按校中计算文件的规定数值,对中间轴承的实际负荷进行检测,其允许误差应不超过计算值的±20%。

8.5 负荷法校中安装轴系

对于细长轴系,允许采用负荷法校中安装轴系,并按其工 艺要求及计算书规定进行验收。

9 轴系扭转振动

船舶修理时,凡主机功率大于 110kw 的船舶推进装置,如经批准后又进行了修改(例如推进系统的重新设计或更改,螺旋桨的改变,加装弹性联轴器等)以及使用中轴系发生断裂问题时,应对轴系扭转振动重新计算和根据需要进行实船测试,并以实测为准。然后进行扭振系统的审查。

附加说明: 5

本标准由全国海洋船标准化技术委员会修船分技术委员 会提出。

本标准由天津修船技术研究所归口。

本标准由上海船厂负责起草。

本标准主要起草人路希遠、康兆宗。