查看: 2998|回复: 5
收起左侧

谁帮我翻译下这个,不要随便网上翻译下

[复制链接]
发表于 2011-1-5 21:38 | 显示全部楼层 |阅读模式 来自: 中国浙江舟山
Proceedings of the 6th International Ship Stability Workshop, Webb Institute, 2002

SMALL COMMERCIAL FISHING VESSEL STABILITY ANALYSIS
WHERE ARE WE NOW?    WHERE ARE WE GOING?

John Womack, St. Michaels Ship Design
34600 Warren Road, Pittsville MD 21850
shipsjw@aol.com

SUMMARY

Small commercial fishing vessels are the largest, most diverse, and constantly evolving class of marine vessels in existence. Yet the methods used to evaluate their stability are a one size fits all with little improvement over the many decades since their introduction in the early 1900's.  This conflict coupled with significant flaws in the methods used to convey stability guidance to the crews leads to unacceptable risks being taken and fishing vessels and their crews being lost.  Improvements are needed in all areas of small commercial fishing vessel analysis;better criteria that reflect the true dynamic environment faced by the crews, better means toconveystability guidance including the current risk of capsize to the crews, and lastly a program to teach stability and how to use the guidance provided.
1.  INTRODUCTION

Small commercial fishing vessels, generally less than 150 feet (50 meters) in length, are the most diverse and largest class  of  marine  vessels  in  existence.     There  are  few common     characteristics     in     hull     shape,     general arrangements  including  deckhouses,  and  fishing  methods among  the  many  fisheries  worldwide.    Even  within  a particular  fishery,  many  differences  in  the  vessels  may exist.
Yet,  the  stability  evaluation  methods  available  today  are mostly of a generic one size fits all boats, all seas, and all fishing methods.   And the basis for the most common of the  standards,  the  area  under  the  righting  arm  curve  to various  angles  of  heel,  is  from  work  done  in  1939  for North European coastal traders with little updating in the intervening years.  Lastly, if the vessel is less than 79 feet (24  meters),  there  are  no  universally  accepted  stability evaluation methods available.
In part because of this conundrum, the commercial fishing industry  is  the  one  of  the  most  dangerous,  and  deadly, occupations  in  many  countries.    Fishers  in  the  United States  in  2000  ranked  second  in  deaths  per  100,000 workers, right behind timber cutters and well above airline pilots, police, and construction workers.  Further, in recent studies  by  Stephen  Roberts  of  the  University  of  Oxford
(Roberts 2002) showed fishers had the most dangerous job in Britain.  They were 50 times more likely to have a fatal accident  over  the  last  twenty  years  than  the  average worker.
Clearly,  improving  the  stability  evaluation  methods  is warranted to further the safety in the commercial fishing industry.   But  this  is  only  part  of  the  solution  required; additional  improvements  in  how  a  "stability  analysis"  is performed on a fishing vessel must be done.
This  paper  will  explore  the  practical  issues  faced  by today's  naval  architects  in  doing  a  satisfactory  stability analysis on small commercial fishing boats.  First, what are all of the parts required for a satisfactory stability analysis; the  stability  evaluation  methods,  the  presentation  of  the stability guidance,  and  the  education  of  the  crews  in stability concepts?  And secondly, how can those parts be accomplished  in  a  practical  fashion;  the  strengths  and weakness of the currently available means and the need for future development?
2.  DEFINING WHAT IS A SMALL COMMERCIAL
FISHING VESSEL STABILITY ANALYSIS

What   is   a   small   commercial   fishing   vessel   stability analysis?  It is not just the mathematical calculations done by Naval Architects.  A correct stability analysis must also include    the    presentation    of    the    stability    guidance developed  to  the  crews  and  the  teaching  of  how  to correctly  use  that  guidance.    This  requirement  for  an integrated  process  from  the  technical  creators  to  the  end users is the only way to ensure the final goal, the safety of the crews.
Logically, this makes common sense.  The best evaluation of a fishing boat's stability by the naval architect is of no value  if  the  resulting  stability  guidance  is  not  clearly communicated to the crews who must use it.  And the best stability guidance is of no value if the crews are not taught how to use it or simply believe it is not correct.
Unfortunately,  parts  of  this  process  are  often  lost  in  the many  conflicts  occurring  in  today's  fisheries.    Cost  is always  a  concern,  especially  with  many  fisheries  under economic pressure.   And the cost comes in two varieties; direct dollars from the additional work done by the naval architect as well as the time spent by the crew not catching fish.  And there is always the underlying mistrust between the  crews  and  the  naval  architects  over  who  best  knows how  to  operate  the  vessel;  those  who  go  to  sea  or  those who have the technical skills (the answer is both).
The end results of better stability guidance are well worth overcoming  these  conflicts.    The  additional  direct  cost increases   will   be   minimal   once   standard   evaluation methods  and  stability  guidance  procedures  have  been developed.  And with a comprehensive training program to teach stability to the crews, the underlying mistrusts can be resolved.
3.  PROVIDING STABILITY GUIDANCE TO
FISHING BOAT CREWS

Currently,   the   primary   means   for   providing   stability operating  guidance  to  small  fishing  boat  crews  is  the "Stability  Letter".   These  stability  letters  are  generally  a simplified version of the traditional "Stability Book" that is generated for large commercial boats.  These simplified stability   letters   have   been   the   preferred   means   of  conveying   the   critical   stability   information   and   boat operating    guidance    to    crews    given    the    simpler configuration of small fishing boats and the lower or non- existent training levels for many of the crews.

For  a  stability  letter  to  be  effective,  it  must  first  be understandable to the crews, and second, the crews must believe that the guidance information provided is correct. While  the  first  requirement  is  fairly  obvious,  the  second requirement is equally important.   The best stability letter on the most seaworthy boat in the world is of no value if the crew believes the loading requirements are wrong and ignores the stability guidance.  Unfortunately, most forms of the stability letters currently in use are neither readily comprehensible and/or are trusted by the crews (Johnson and Womack 2001).
3.1  KEY AREAS TO IMPROVE STABILITY
GUIDANCE

The  problems  that  exist  with  current  types  of  stability letters  used  to  provide  stability  to  small  fishing  vessel crews are the principal reason crews are disregarding these letters,  either  intentionally  or  because  the  guidance  is incomprehensible,   and   putting   themselves   in   danger. Fishing boat crews don't have a death wish; they just truly don't  understand  the  potential  adverse  impacts  on  their boat's overall stability when they load the boat to make it "feel" better under normal fishing operations (Johnson and Womack 2001).
Since the principal blame for the problems with stability letters lies with the naval architects and marine surveyors who  create them, it  is they  who  must find the solutions. But  they  must  understand  what  the  fishermen  need  and how fishing works in developing the fixes.  The solutions for  improving  stability  guidance  to  small  commercial fishing vessel crews are simple.
1.  Be  written  to  provide  stability  guidance,  not  to dictate the boat's operation.
2. Present the safe loading conditions clearly, both visually and written.
3. Provide some means for conveying the stability levels, i.e. risk of capsizing, associated with each of the loading conditions.
4. Be comprehensible by crews with little or no formal training.
5. Use practical operating restrictions on variable catch limits, etc.
6. Use practical means to allow the crew to check if the boat is loaded correctly.
7. Develop a series of operating guidelines on proper seamanship and boat maintenance suitable for insuring a boat's adequate stability.
In  summary,  the  goal  is  to  provide  the  captain  with practical stability guidance and a way to gauge the risks of capsizing based on loading, weather, and other factors, and let them run their boats.
3.2  PROVIDING RISK BASED STABILITY
GUIDANCE BY LOAD MATRIXES

Loading matrixes (see Figure 2 for an example, additional examples  to  be  shown  during  the  Workshop)  have  been proposed (Johnson and Womack 2001) to meet the goals presented  above.    The  matrixes  are  easy  to  use  while showing all potential  loading conditions on a single page.
With catch levels on the left column and various tank and deck loadings across the top and bottom, it is easy for the crew to check if their boat's stability is acceptable.










Figure 2:  Sample Safe/Unsafe Loading Matrix

These  risk  based  loading  matrixes,  particularly  the  color versions,  offer  many  advantages  to  the  crews  in  safely operating  their  vessel.   First  the  color  gives  very  quick intuitive indications of the current risk of capsize for any conceivable loading condition.  Second, the matrixes allow the crew to plan ahead to ensure adequate stability.  With all of the loading conditions on single sheet, the crew can literally  plot  their  trip  on  the  load  matrix  and  adjust loading, ballast, or fuel levels to suit.

This  type  of  loading  matrix  also  has  the  advantage  of putting the operational decisions for the boat back to the captain  instead  of  with  the  naval  architect  as  current safe/unsafe stability letters do.  This approach does require that the captain, vessel owner, and other decision makers must clearly understand the basic concepts of stability in order to select the appropriate risk level, given current and predicted weather conditions and other trip factors.

4.  STABILITY GUIDANCE EDUCATION FOR
FISHING BOAT CREWS

Assuming   the   stability   letter   adequately   provides   the necessary stability operating guidance, the crews must also believe that the guidance provided is correct so they will follow it. Unfortunately, from  many casualties reports in the  United  States  and  first  hand  experience,  the  crews often ignore stability letters because they believe they, not the Naval Architects, know how to load the boat correctly. (Johnson & Womack 2001, USCG 1999)

The  solution  is  simple;  improve  the  training  of  basic stability concepts to fishing boat crews so they can better understand and trust their letters.   From discussions with fishing  boat  crews,  they  are  interested  in  understanding their stability letters.   The problem is the creation of the stability  letter  appears  to  be a  lot  of  black  magic  by  the naval  architect.    From  moving  some  weights  back  and forth on their boat, the architect comes back with a piece of paper on how to load their boat.  And often, the stability instructions may run counter to how they believe their boat should be loaded or restricts the maximum allowable catch to levels below what they are carrying now.

To  teach  stability  to  fishing  boat  crews  will  require explaining    fishing    boat    stability    and    its    complex interactions   to   crews   who   generally   lack   a   higher education.    Common  naval  architecture  terms  used  in stability are simply unknown, and often incomprehensible, to  the  crews.    For  example,  even  the  basic  concept  of center   of   buoyancy,   intuitively   understood   by   naval architects,  is unknown to many crews.  The challenge will be in convincing the crew that the center of buoyancy is a real  location  that  all  of  the  buoyant  forces  are  acting through,  not  an  imaginary  point  on  their  boat  that  the crews may have a hard time conceiving.

The  course  needs  to  only  teach  the  basic  concepts  of stability and  the effect of typical fishing operations on  a boat's stability.  The course should not teach how stability is calculated, that is the responsibility of the naval architect who thoroughly understands all of the nuances of stability.

The  primary  goals  for  the  proposed  stability  training
course are:
1.  Explain what the center of gravity (G) and center
of buoyancy (B) are.
2.  Show how the relationship between G and B
works to keep the vessel upright as it heels.
3.  Explain the basic methods of determining if a
vessel has adequate stability.
4.  Show the effect on a vessel's stability from typical
fishing operations.
The basic layout of the stability training course consists of two parts; a written manual and a verbal presentation.  The two individual components of the training course will be developed  to  be  mutually  supporting.    Figures  in  the written  manual  would  be  similar  to  the  displays  and models    used    in    the    presentation,    and    concepts demonstrated in the presentation would be in the manual. This will allow crews that have taken the training course to use the written manual as follow-up take-home notes to the verbal presentation.





Figure 3:  Example Training Manual Figure









Figure 4:  Example Training Manual Figure




The   written   manual   will   be   developed   to   be   self- explanatory to persons who have some formal education or seamanship  training.    The  figures  intended  to  show  the basic   stability   concepts   would   be   kept   simple   and structured  to  appear  similar  to  existing  fishing  boats designs.  It is  important  to make the figures believable to the crews.   If they look similar to their boat, the chances are better the crew will believe the message even when it runs counter to past beliefs.  Figure 3 to 5 are examples of the  proposed  figures  (more  will  be  shown  during  the Workshop).










Figure 5:  Example Training Manual Figure
The second component of the training course, the verbal presentation,  will  be  developed  for  both  small  and  large groups.   The small group is intended to be an individual fishing  boat's  crew  and  owner,  with  the  larger  groups being at meetings such as trade shows or National Marine Fisheries   Service   regional   council   meetings.  The
presentation  for  individual  boats  will  be  made  easily
transportable to allow the presentation to be made onboard,
at dockside, or even in the local watering hole.   This will
allow  a  naval  architect  to  give  the  presentation  when
delivering a stability letter to a boat.

For both presentation sizes, visual displays and static and dynamic demonstration models would be used.  The visual displays would be enlarged versions of the training manual figures, posters, slides or computer driven graphics.   The models  are  an  important  part  of  the  presentation  as  they allow  the  crews  to  see  "hands-on"  what  is  happening during  typical  fishing  operations.    As  an  example,  the
crews can see directly the loss of stability when they boat is  overloaded  or  the  negative  effects  of  slack  tanks. Actually  "capsizing"  the  model,  especially  when  they believe they have loaded the model to make it safer, is a very  convincing  training  method.  (Johnson  &  Womack 2001)

From   practical   experience   it   is   important   that   with presentations for individual vessels, actual graphs of that vessel's  righting  arms  be integrated  into  the presentation figures.   Stability strengths or weakness particular to the subject vessel can be clearly shown.
6.  CONCLUSION

By   improving   all   three   areas   required   for   providing stability  guidance  to  small  commercial  fishing  vessels; stability  criteria,  stability  letters,  and  education,  we  can significantly  improve  the  safety  of  the  crews.     New stability  criteria  need  to  be  developed  to  reflect  today's fishing  vessels  and  the  sea  conditions  they  operate  in. New means to convey the stability guidance to the crews also need to be developed, particularly the current risk of capsize.   And lastly to tie this all together, an integrated program  to  teach  the  basic  concepts  of  stability  and  the crew's effect on stability needs to be developed.
7.  REFERENCES

Bird, H. and Morrall, A. 1986. Research Towards Realistic Stability    Criteria,    Proceedings    of    the   International Conference  on  the  Safeship  Project:  Ship  Stability  and Safety, RINA, London 9-10 June 1986.

Campbell,  D.,  2002,  Wages  of  the  Sea:  Thirteen  Deadly Days on the North Atlantic , Carroll & Graff, 2002.

Cleary, W., 1982. SuBDIvision, Stability, Liability. Marine Technology, Vol. 19, No. 3, July 1982, pp 228-244.

Cleary,   W.   1993.   The   Regulation   of   Ships   Stability Reserve,  Proc.  of  the  U.  S.  coast  Guard  Vessel  Stability Symposium, New London, CT, March 15-17, 1993.

Cleary, W. 2002. Private Communication

Cramer,  H.,  and  Tellkamp,  J.,  2002.  Towards  the  Direct Assessment of a Ship's Intact Stability, Proceedings of the 6th International Ship Stability Workshop, Webb Institute, 14-16 October 2002.

Dahle,  E.  A.,  and  Myrhaug,  D.,  1995.  Risk  Analysis Applied    to    Capsize    of    Fishing    Vessels.    Marine Technology, Vol. 32, No. 4, October 1995, pp. 245-257.

Francescutto,  A.,  Russo  Krauss,  G.,  Cardo,  A.,  2001 "Dynamic Stability and Effect of Water on Deck on Small Fishing  Vessels",  Paper  n.  6,  Proceedings  International Conference on "Small Craft Safety", The Royal Institution of Naval Architects, London, 22-23 May 2001.

Francescutto,  A.,  2002  Intact  Stability,  The  Way  Ahead, Proceedings   of   the   6th   International   Ship   Stability Workshop, Webb Institute, 14-16 October 2002.

Grochowalski, S., 1989, Investigation into the Physics of Ship  Capsizing  by  Combined  Captive  and  Free-Running Model Tests. SNAME Transactions, 1989 pp 169-212.

IMO, 1995. 1993 Torremolinos Protocol and Torremolinos International convention for the Safety of Fishing Vessels. Consolidated Edition, 1995

Jens, J.L.E., and Kobylinski, L: IMO Activities in Respect of  International  Requirements  for  the  Stability  of  Ships, Proc.  Second  International  Conference  on  Stability  of Ships and Ocean vehicles, Tokyo, 1982.

Johnson,  B.,  Wallace,  D.,  Womack,  J.  and  Savage,  R. 2000, Developing the Foundation for an Interdisciplinary Approach     to     Improving     Fishing     Vessel     Safety, Proceedings of the IFISH Conference, Woods Hole, MA, October 25-27, 2000.

Johnson,  B.,  and  Womack,  J.  2001,  On  Developing  a Rational  and  User-friendly  Approach  to  Fishing  Vessel Stability and Operational Guidance, Proceedings of the 5th International  Ship  Stability  Workshop, Trieste  Italy,  Sept 2001.

Johnson, B., and Grochowalski, S., 2002. Development of a  Performance  Based  Fishing  Vessel  Stability  Criteria, Proceedings   of   the   6th   International   Ship   Stability Workshop, Webb Institute, 14-16 October 2002.

Rahola, J., 1939. The Judging of the Stability of Ships and the  Determination  of  the  Minimum  Amount  of  Stability. Doctoral Thesis, The University of Finland, May 1939.

Roberts,  S.  E.,  2002.  Hazardous  Occupations  in  Great Britain, Lancet 2002; 360: 543-44.

Spyrou,  K.  J.,  2002.  A  Basis  for  Developing  a  Rational Alternative   to   the   Weather   Criterion:   Problems   and Capabilities,  Proceedings  of  the  6th  International  Ship Stability Workshop, Webb Institute, 14-16 October 2002.

Umeda,   N.,   and   Peters,   A.,   2002.   Recent   Research Progress  on  Intact  Stability  in  Following/Qartering  Seas, Proceedings   of   the   6th   International   Ship   Stability Workshop, Webb Institute, 14-16 October 2002.

USCG  1986.  Proposed  Voluntary  Stability  Standards  for Uninspected Commercial Fishing Vessels, Navigation and Vessel Inspection Circular NVIC 5-86, 1986.

USCG 1999. Dying to Fish: Fishing Vessel Casualty Task Force Report, USCG, March 1999.
回复

使用道具 举报

龙船学院
发表于 2011-1-5 22:02 | 显示全部楼层 来自: 中国上海
{:2_33:}这是随便翻译吗?谁肯花那么多时间随便帮你翻译?
回复 支持 反对

使用道具 举报

发表于 2011-1-5 22:12 | 显示全部楼层 来自: 中国广东广州
回复 支持 反对

使用道具 举报

发表于 2011-1-6 10:14 | 显示全部楼层 来自: 中国浙江台州
这拼音拼的都不对啊
回复 支持 反对

使用道具 举报

发表于 2011-1-6 14:51 | 显示全部楼层 来自: 中国江苏扬州
大哥 你给钱都不一定有人给你翻译啊
回复 支持 反对

使用道具 举报

发表于 2011-1-17 11:23 | 显示全部楼层 来自: 中国江苏泰州
“小型商业渔船的稳定性分析”
翻译完一整篇小论文,工作量太大了吧?!
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

小黑屋|标签|免责声明|龙船社区

GMT+8, 2025-1-10 10:40

Powered by Imarine

Copyright © 2006, 龙船社区

快速回复 返回顶部 返回列表